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Abstract Well-constrained carbon:nitrogen:phos- 
phoms (C:N:P) ratios in planktonic biomass, and 
their importance in advancing our understanding of 
biological processes and nutrient cycling in marine 
ecosystems, has motivated ecologists to search for 
similar patterns in terrestrial ecosystems. Recent 
analyses indicate the existence of “Redheld-Iike” 
ratios in plants, and such data may provide insight 
into the nature of nutrient limitation in terrestrial 
ecosystems. We searched for analogous patterns in 
the soil and the soil microbial biomass by conducting 
a review of the literature. Although soil is character­
ized by high biological diversity, structural complex­
ity and spatial heterogeneity, we found remarkably 
consistent C:N:P ratios in both total soil pools and the 
soil microbial biomass. Our analysis indicates that, 
similar to marine phytoplankton, element concentra­
tions of individual phylogenetic groups within the 
soil microbial community may vary, but on average, 
atomic C:N:P ratios in both the soil (186:13:1) and
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the soil microbial biomass (60:7:1) are well-con- 
strained at the global scale. We did see signihcant 
variation in soil and microbial element ratios between 
vegetation types (i.e., forest versus grassland), but in 
most cases, the similarities in soil and microbial 
element ratios among sites and across large scales 
were more apparent than the differences. Consistent 
microbial biomass element ratios, combined with 
data linking specihc patterns of microbial element 
stoichiometry with direct evidence of microbial 
nutrient limitation, suggest that measuring the pro­
portions of C, N and P in the microbial biomass may 
represent another useful tool for assessing nutrient 
limitation of ecosystem processes in terrestrial 
ecosystems.

Keywords Carbon ■ Microbial biomass ■
Nitrogen ■ Phosphorus ■ Soil ■ Stoichiometry

The environment not only determines the 
conditions under which life exists, but the 
organisms influence the conditions prevailing 
in the environment.—Alfred Redheld (1958)

Introduction

In 1958, Alfred Redheld presented evidence of what 
are now two of the most powerful and useful 
principles in biogeochemistry: (I) that marine plank­
ton are composed of carbon (C), nitrogen (N), and
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phosphorus (P) in a characteristic molar ratio; and (2) 
that the abundance of C, N and P is regulated by 
reciprocal interactions between marine organisms and 
the ocean environment. Redheld (1958) observed 
that, on average, planktonic biomass contains C, N 
and P in an atomic ratio of 106:16:1, similar to the 
ratio of C, N and P in marine water. The elegant 
simplicity of this stoichiometric relationship—the 
Redheld ratio—belies its incredible utility. The 
consistent stoichiometry of C, N and P in the ocean 
informs our understanding of ocean-atmosphere car­
bon dioxide (CO2) exchange, provides valuable 
insight into the nature and extent of nutrient limita­
tion of marine net primary production (NPP) and 
ocean C storage, and contributes to our knowledge of 
biogeochemical cycling of N and P in the world’s 
oceans (Cooper et al. 1996; Field et al. 1998; Hecky 
and Kilham 1988).

The predictive power of the Redheld ratio has 
prompted ecologists to search for similar patterns and 
relationships in terrestrial ecosystems, and has even 
inspired a new discipline— ecological stoichiome­
try— which seeks to understand the balance of 
multiple chemical elements in ecological interactions 
(Elser et al. 2000; Sterner and Elser 2002). Similar 
functional relationships between soil microbial chem­
istry and soil processes were identihed even before 
Redheld’s canonical ratio was presented (e.g., Waks- 
man and Starkey 1931), but our current understand­
ing of stoichiometric relationships and their 
signihcance in terrestrial ecosystems is still relatively 
limited.

Recent data, however, do suggest parallel interac­
tions between the terrestrial environment and organ­
isms. Element ratios in terrestrial systems appear to 
be more variable than those in the ocean, but parallels 
between the nutrient abundance of organism and the 
environment seem to exist in plant communities and 
forest ecosystems worldwide (Reich and Oleksyn 
2004; Hedin 2004; McGroddy et al. 2004; Reiners 
1986). Eor example, using a dataset of more than 
1,200 plant species from ~ 4 5 0  unique sites, Reich 
and Oleksyn (2004) showed that plant foliar N:P 
ratios increase from high to low latitudes, coincident 
with biogeographical gradients of soil substrate age 
(i.e., soil nutrient availability) and climate. Until now, 
the existence of similar ratios and patterns in the soil 
microbial biomass has not been thoroughly 
investigated.

Important physical, chemical, and biological dif­
ferences between soil and aquatic habitats may 
preclude the emergence of constrained microbial 
element ratios in soil (e.g., McGroddy et al. 2004). 
Many marine nanoplankton are composed primarily 
of protoplasm and thin cell walls composed of C, N 
and P, and thus represent an “ideal organism 
stoichiometry from which others may be derivatives” 
(Reiners 1986). In contrast, the soil microbial 
biomass is characterized by an anatomically and 
physiologically diverse community of organisms that 
spans all the major life domains. Nonetheless, a long 
history of soil microbiological research does suggest 
that: (1) microbial biomass varies as a function of soil 
C content (Wardle 1992, 1998); and (2) microbial 
biomass C:N ratios (on a mass basis) are relatively 
consistent, typically varying between 8:1 and 12:1 
(Paul and Clark 1996; Wright and Coleman 2000). 
However, while the relationships between soil and 
microbial C and N content have been documented, 
data from terrestrial ecosystems also indicate that 
variations in organismal N:P ratios are more infor­
mative than C:N ratios for understanding many 
important terrestrial ecosystem processes (Reich and 
Oleksyn 2004; Townsend et al. 2007).

Sterner and Elser (2002) presented a conceptual 
model describing the potential stoichiometric rela­
tionships between organisms and the environment 
(Eig. 1). Eirst, organisms may be characterized by 
strict homeostasis, where changes in resource stoi­
chiometry have no influence on organism stoichi­
ometry. In a strict homeostasis, organism nutrient 
ratios are rigorously established, and in turn, organ­
ism growth is strongly regulated by the most 
limiting nutrient. Alternatively, an organism may 
show identical stoichiometry to its resources, with 
changes in resource stoichiometry driving corre­
sponding changes in organism stoichiometry {no 
homeostasis). Einally, changes in resource stoichi­
ometry may influence organism stoichiometry in a 
manner that varies from a 1:1 relationship (Sterner 
and Elser 2002). Here, our goal was to examine 
global-scale patterns of C:N:P ratios in soil and in 
soil microbial biomass, and to investigate the 
relationships between environmental and organismal 
element abundance. We “extracted” microbial bio­
mass C, N and P data from the primary literature to 
address the following questions. Eirst, is there a 
consistent ratio of elements— akin to the Redheld
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Fig. 1 Potential patterns relating resource to consumer stoi­
chiometry. The stoichiometry of homeostatic organisms (solid 
line) is strictly defined, and changes in resource stoichiometry 
do not influence organism stoichiometry. The stoichiometry of 
non-homeostatic organisms may match resource stoichiometry 
in a 1:1 relationship (large dashes) or in a relationship (small 
dashes) that diverges from the 1:1 line (Adapted from Sterner 
and Elser 2002)

ratio— in the soil microbial biomass? Second, what 
is the relationship between environmental and soil 
microbial biomass element abundance? And third, 
do environmental and microbial element concentra­
tions vary in predictable ways across latitudes and 
distinct vegetation types?

Methods

Literature review

We compiled a database of soil and microbial C, N 
and P concentrations and ratios by conducting a 
thorough review of the primary literature. Our 
strategy for collecting data was to search the ISl 
Web of Science online database (bttp://isiknowl- 
edge.com/), and our bnal dataset included 186 
observations from 48 unique, published sources. For 
this analysis, we were interested in microbial C, N 
and P. Because estimates of microbial P frequently 
include estimates of microbial C and N (while 
estimates of microbial C and N often do not include 
microbial P data), we constrained our survey by 
searching for published literature that cited the most 
common method for estimating microbial biomass P 
concentrations in soil. Specibcally, we searched for

literature in the database that cited at least one of the 
following microbial P methodological studies: Jen- 
kinson and Powlson (1976); Brookes et al. (1982, 
1984); Hedley and Stewart (1982); Oberson et al. 
(1997); or Morel et al. (1996).

Quantifying soil microbial biomass: 
the chloroform fumigation and extraction 
(FE) technique

The most common technique used to estimate 
microbial biomass P (and biomass C and N) is the 
chloroform fumigation-extraction method (FE). 
Briefly, moist soil samples are split into two 
subsamples; one set of soil samples is immediately 
extracted (0.5 M K2SO4 for microbial C and N or 
0.5 M NaHCOa for microbial P), and the other set is 
fumigated with chloroform and then extracted (Broo­
kes et al. 1982, 1984, 1985). Following centrifuga­
tion, samples are digested (for N and P), analyzed for 
C, N and P concentration, and microbial biomass 
element content is calculated from the difference 
between fumigated and non-fumigated soil samples.

The majority of published estimates of microbial 
C, N and P have utilized the FE technique, but the 
method does have several limitations that may lead to 
errors in microbial C, N and P estimates (Jenkinson 
et al. 2004). First, persistent enzymatic activity 
during the fumigation (and variations in enzyme 
activity between sites and soil types) may drive 
variations in available N that are unrelated to soil 
microbial biomass concentrations N per se. Next, 
chloroform exposure may yield more than just 
biomass C, N and P by rendering non-microbial 
biomass (e.g., plant material) extractable. Finally, 
only a fraction of the microbial biomass is solubilized 
during chloroform fumigation. Thus, estimates of 
microbial biomass must be adjusted using experi­
mentally-derived conversion factors for C, N and P 
(e.g., 0.45, 0.45, and 0.40 for C, N and P, respec­
tively; Jenkinson et al. 2004; Brookes et al. 1984). 
While the most commonly used conversion factors 
have been experimentally shown to represent the 
proportions of C, N and P that are mineralized from a 
small selection of organisms in pure culture (e.g., 
Jenkinson et al. 2004), they may not be accurate for a 
diverse soil community, and they may vary signib- 
cantly between soil types. Nonetheless, for the
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purposes of this analyses, we used published “micro­
bial biomass” values that reflect the specihc chloro­
form FE conversion factors used for estimating 
microbial C, N and P in each of the published 
estimates.

In addition to microbial biomass C, N and P, 
concentrations of total soil C, N and P were also 
gathered from the primary literature sources when 
available. In most cases, we used estimates of 
microbial biomass and soil element pools obtained 
from surface soils (typically 0 -1 0  cm mineral soil 
samples). At some sites, however, slightly deeper or 
shallower soil samples were collected. For example, 
in several of the bigb-latitude sites, 0 -1 0  cm soils 
represented organic horizons, and in others, soil 
samples were collected from both the organic (e.g., 
0-1 0  cm) and mineral horizons (e.g., 10-20  cm). 
When sources reported both organic and mineral soil 
biomass estimates separately, both measurements 
were included in our analysis. Finally, we included 
data only from sites that were untilled, unfertilized 
and free of intensive agriculture, and we used only 
data obtained from held fresh soil samples. Microbial 
biomass and total soil element pool estimates gener­
ated from samples collected across years were 
averaged to generate a single data point, but estimates 
generated from samples collected across multiple 
seasons within a year were treated as unique obser­
vations (e.g., Cleveland et al. 2004).

Incomplete climate data in many of the sources 
prevented a detailed climate— microbial biomass 
analysis. However, because latitude serves as a 
general proxy for climate, we investigated possible 
latitudinal variation in microbial element ratios (e.g., 
Reich and Oleksyn 2004). For the purposes of the 
vegetation-type analysis, vegetation was classihed 
based on the reported description as either grassland 
or forest, the two vegetation classihcations that we 
expected would be most likely to show signihcant 
differences in soil and microbial element ratios. Data 
from other vegetation types were excluded from this 
analysis.

tested differences between the mean soil and micro­
bial biomass ratios (C:N, C:P, N:P) with one-way 
analysis of variance (ANOVA). Next, we examined 
differences among microbial and soil element ratios 
in the two most common vegetation types—forest 
and grassland—using a one-way ANOVA. Finally, 
we used one-sample f-tests to test for signihcant 
differences between the three element ratios in soil 
the soil microbial biomass, and in the ocean (i.e., the 
Redheld ratio [106:16:1]). Prior to all analyses, 
nutrient ratios were logio transformed to improve 
the distribution and homogeneity of variance, but all 
means and standard errors were back transformed 
into the original units.

The relationships among the nutrients for soils and 
microbial biomass were examined using standardized 
major axis (SMA) estimation (Warton et al. 2006). 
Unlike ordinary least-squares regression, the SMA 
technique assesses the “best ht bivariate line” 
between two variables instead of predicting one 
variable from the other and hts a slope and an 
intercept for the model. Because of the logio-normal 
distribution of nutrient ratios, stoichiometric relation­
ships were analyzed on a log-log scale with the 
model: log y = a + b (log x). This relationship is 
commonly used for allometric analysis on size-based 
measures, such as biomass, and is based on the power 
function, or the allometric equation: y = a (Reiss 
1989). When the slope (b) of this model does not 
signihcantly differ from one, the relationship is 
described as isometric, indicating the special case 
of a linear relationship between the two variables. 
Relationships among the three soil nutrient pools, the 
three microbial biomass pools, and the soil-microbial 
biomass relationships for the three nutrients (soil C 
versus microbial C, soil N versus microbial N, soil P 
versus microbial P) were evaluated using the software 
SMATR (Falster et al. 2006).

Results and discussion

Total soil C:N:P ratios

Data analyses

We calculated average molar ratios (C:N, C:P and 
N:P) of both the total soil and the microbial biomass 
element pools and tested several hypotheses. First, we

Redheld (1958) observed that both the abundance and 
ratio of elements in ocean water are constrained, and 
suggested that close interactions between organisms 
and the environment drive the observed similarities in 
their element ratios. Our analysis suggests a similar
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Fig. 2 Relationships 
between C, N and P in (A) 
the soil and (B) the soil 
microbial biomass
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pattern in soil (Fig. 2). At the global scale, the 
abundance of total C, N and P in soil varies by orders 
of magnitude. Across the entire database, total soil C 
varies from 1,108 mmol kg^ to 39,083 mmol kg^ 
and total soil N varies from 21 mmol kg^ to more 
than 1,300 mmol kg^ (Fig. 2). However, although 
total soil element content is highly variable, our 
analysis indicates that total soil C:N:P ratios are 
remarkably constrained (Fig. 2A; Table 1). Across 
all data, total soil C:N ratios vary between 2 and 30, 
and total soil N:P ratios from a low of 1 to a high of 
77, with log-normal distributions (Fig. 3). In addi­
tion, in spite of observed differences in plant element 
ratios across broadly-dehned vegetation types and 
latitudes (Reich and Oleksyn 2004; McGroddy et al. 
2004), soil nutrient ratios did not vary signihcantly 
between forests and grasslands (Table 1).

In general, biological organisms have ordered 
chemical composition (Reiners 1986), and recent 
analyses show that like marine plankton, terrestrial 
plants have relatively constrained element ratios 
(McGroddy et al. 2004; Reich and Oleksyn 2004). 
Fixed soil C:N ratios across large geographical 
distances are consistent with the fact that plants are 
the major source of total soil C and N in terrestrial 
ecosystems, but hxed C:P and N:P ratios in soil are

more surprising. In contrast to total soil C and N, 
weathering of primary rock minerals provides the 
dominant, albeit highly variable, source of total P in 
terrestrial ecosystems (Walker and Syers 1976; 
Chadwick et al. 1999). Nonetheless, the results of 
the SMA indicate that on the global scale, there are 
signihcant, positive associations between total soil C, 
N and P (overall, P < 0.0001 for all models; 
Table 2). The strength of the relationship varied 
between elements, but r^-values ranged from 0.31 
(soil C:P) to 0.75 (soil C:N; Table 2). The relation­
ship between soil C and N was isometric with a slope 
not signihcantly different than 1 (P > 0.05), but the 
relationships between C and P and N and P were non­
linear, with concentrations of P increasing slower 
than C and N (P < 0.05). In other words, it appears as 
though when organic matter accumulates in an 
ecosystem, soil C and N concentrations become 
increasingly decoupled from total soil P concentra­
tion. This observation may rehect a more efhcient use 
of P released from the cycling of organic P pools in 
the mineral soil and forest hoor, rather than on 
weathering of inorganic P from primary minerals; 
organic P pools are thought to be an important source 
for labile P in forest soils, especially for tropical 
forests (Johnson et al. 2003). In any case, the strong.
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Table 1 Atomic (molar) nutrient ratios in the microbial biomass and total soil element pools

C:N C:P N:P References

Microbial biomass

Overall 8.6 ± 0.3 (132) 59.5 ± 3.6 (157) 6.9 ± 0.4 (150) This study

Grassland 8.3 ± 0.3 (57) 47.3 ± 3.4“ (77) 4.9 ± 0.4“ (57) This study

Forest 8.2 ± 0.4 (57) 74.0 ± 6.2'’ (63) 8.9 ± 0.8'’ (67) This study

Bacteria 6.5 46 7 Reiners (1986)

Fungi 5-17 15 Sterner and Elser (2000); Reiners (1986)

Soil (total pools)

Overall 14.3 ± 0.5 (146) 186.0 ± 12.9 (135) 13.1 ± 0.8 (150) This study

Grassland 13.8 ± 0.4 (75) 166.0 ± 12.2 (72) 12.3 ± 0.7 (72) This study

Forest 14.5 ± 1.2 (55) 211.7 ± 28.4 (47) 14.6 ± 1.8 (47) This study

Tree foliage

Overall 43.6 ± 3.5 1334.1 ± 137.6 27.8 ± 1.4 McGroddy et al. (2004)

Temperate broadleaf 35.1 ± 3.7 922.3 ± 77.3 28.2 ± 1.5 McGroddy et al. (2004)

Temperate coniferous 59.5 ± 7.0 1231.8 ± 140.3 21.7 ± 1.7 McGroddy et al. (2004)

Tropical 35.5 ± 4 .1 2456.9 ± 503.7 43.4 ± 4.6 McGroddy et al. (2004)

Tree litter

Overall 66.2 ± 6.3 3144 ± 341.9 45.5 ± 3.2 McGroddy et al. (2004)

Temperate broadleaf 58.4 ± 3.8 1702.4 ± 170.3 29.1 ± 2.0 McGroddy et al. (2004)

Temperate coniferous 87.8 ± 6.9 2352.9 ± 350.3 26.0 ± 4.6 McGroddy et al. (2004)

Tropical 60.3 ± 13.2 4116.0 ± 577.4 62.7 ± 4.9 McGroddy et al. (2004)

Data represent the geometric mean ± 1 SE; Sample numbers are shown in parentheses. Differences between the two vegetation types 
(grassland and forest) were tested with a one-way ANOVA on logio-transformed data, and significant differences (a = 0.05) are 
indicated with lowercase letters. Previously published element ratios in specific soil microbial groups, tree foliage, and tree litter are 
included for comparison

bivariate relationships among the three elements 
indicates that even though organisms may not 
directly regulate total soil P, total soil P ultimately 
influences the amount of biologically active P that is 
available for plant productivity, thus indirectly link­
ing the abundance of total P to the abundances of 
total C and N in soil.

C:N:P ratios in the soil microbial biomass

The biogeochemical cycles of C and N are tightly 
coupled in terrestrial ecosystems. For example, high 
N requirements during photosynthesis, combined 
with low N availability in many terrestrial ecosys­
tems, means that increases in primary production are 
dependent on the availability of N to fuel increased 
photosynthetic C acquisition (Vitousek and Howarth 
1991; Asner et al. 1997). Fairly consistent plant litter 
element ratios (e.g., McGroddy et al. 2004)— and 
hence consistent element ratios in the non-woody

organic matter inputs available for microbial decom­
position and metabolism—could suggest that the soil 
microbial biomass may also be characterized by 
distinct C:element ratios. However, several important 
differences between soil and aquatic habitats may 
preclude the emergence of constrained soil microbial 
element ratios. First, the potential for element 
mobility and mixing is high in aquatic ecosystems. 
In marine ecosystems in particular, regional and 
global ocean currents and upwelling lead to well- 
mixed, relatively homogeneous conditions (Redheld 
1958). In contrast, relative element immobility within 
a hxed (non-huid) soil medium, signihcant spatial 
differences in soil nutrient concentrations driven by 
state factor variation (Jenny 1941), and nutrient 
redistribution mechanisms that operate only on 
small-scales (e.g., litterfall) perpetuate soil nutrient 
heterogeneity (McGroddy et al. 2004). Next, marine 
element ratios are strongly inhuenced by the growth 
demands of photoautotrophic organisms (Falkowski 
et al. 2000) that assimilate nutrients and inorganic
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Fig. 3 Frequency distribution of nutrient ratios (C:N, C:P, 
N:P) in the soil and the soil microbial biomass. The X-axis of 
the histogram is presented using a Iog2 scale to highlight the 
lognormal distribution o f the soil and microbial element ratios

carbon (CO2) to build biomass, but the soil microbial 
biomass is dominated by heterotrophic organisms that 
must metabolize a tremendous diversity of plant- 
derived organic compounds, many of which are 
characterized by extreme variations in nutrient con­
tent (Paul and Clark 1996). Third, the planktonic 
biomass is dominated by unicellular organisms

lacking mechanical structures (i.e., plankton is com­
posed primarily of cytoplasmic materials; Reiners 
1986), but the soil microbial biomass consists of a 
diverse community of organisms occupying vastly 
divergent phylogenetic lineages and showing signif­
icant variation in form and physiology (Table 1). 
Finally, several known sources of error when using 
the FE method in soil may further mask the presence 
of consistent element ratios in the soil microbial 
biomass (Ingham and Horton 1987; Ross 1989; 
Sparling and West 1989; Ross 1990; Badalucco et al. 
1997).

Despite the relative complexity of the soil medium, 
soil microbial community structure, and potential 
methodological limitations, our analysis revealed 
highly constrained C:N:P ratios in the soil microbial 
biomass (Fig. 2B). As was the case with total element 
concentrations, soil microbial biomass concentrations 
across the entire database spanned several orders of 
magnitude; soil microbial C, N and P concentrations 
varied from 5-2,500 pmol k g ^ \  1-178 pmol k g ^ \  
and 0.1-14 pmol k g ^ \  respectively. However, the 
SMA analysis indicated linear relationships between 
all three elements in microbial biomass (Table 2). 
Thus, even though the ranges of nutrient concentra­
tions in microbial biomass were large, element ratios 
scaled isometrically and were well-constrained; C:N 
ratios averaged 8.6 ± 0.3 (geometric mean ± 1 SE) 
and ranged from 3 to 24, and N:P ratios averaged 
6.9 ± 0.4, ranging from 1 to 55 (Fig. 3; Table 1).

Relationships between soil and microbial element 
ratios

Unlike the pattern for soil nutrients, there were 
signihcant differences in microbial biomass element 
ratios between grasslands and forests (Table 1). The 
microbial biomass in the forest soils had signihcantly 
higher C:P and N:P ratios, largely due to lower 
concentrations of microbial biomass P. One possible 
explanation for the difference in element ratios 
between the two vegetation types may be the 
presence of a well-developed litter layer (with 
relatively high C:P and N:P ratios) in many forests. 
At sites that reported values for both the litter layer 
and the mineral soil, microbial biomass was consis­
tently higher in former, with microbial biomass 
element ratios rehecting the relatively high C:P ratios
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Table 2 Summary of standardized major axis 
soils

analysis of logio-transformcd molar nutrient concentrations in microbial biomass and

Variable

X V

n r" Intercept Slope

Soil C S o ilN 146 0.75 -0 .9 2 0.93

Soil C Soil P 135 0.31 -1 .6 2 0.82

Soil N Soil P 135 0.41 -0 .8 2 0.87

Microbial C Microbial N 133 0.87 -0 .9 3 0.99

Microbial C Microbial P 161 0.52 -1 .7 9 1.00

Microbial N Microbial P 153 0.48 -0 .8 1 0.97

Soil C Microbial C 145 0.39 -2 .0 7 1.11

Soil N Microbial N 118 0.15 -1 .9 9 1.26

Soil P Microbial P 135 0.08 -1 .7 7 1.50

For all the nutrient relationships, the bivariate relationship was significant (P < 0.001). Slopes not significantly different than 1 are 
displayed in boldface font indicating an isometric (i.e., linear) relationship between nutrients

of the decomposing plant material (Santmckova et al. 
2004; Ross et al. 1999; Chen et al. 2000a). For 
example, sites in New Zealand where pine forest was 
replaced with native grasses, microbial biomass C 
declined by ~50% , and the soil microbial biomass 
C:P changed by 33% (Yeates and Saggar 1998; Chen 
et al. 2000a), suggesting that changes in vegetation 
type have the potential to influence microbial 
biomass element stoichiometry. Alternatively, differ­
ences between vegetation types may be related to 
variations in litter quality, litter quantity or relatively 
consistent differences in the biomass proportions of 
major groups within the soil microbial community 
(e.g., higher bacterial:fungal ratios in grassland 
versus forest; Paul and Clark 1996). While the 
precise mechanism is unclear, our analysis indicates 
that profound differences in plant element ratios 
correspond with measurable changes in microbial 
biomass ratios between plant community types.

Overall, soil microbial biomass C and total soil C 
were strongly and linearly related (Table 2 ,

= 0.39, overall P < 0.0001). This corroborates 
previous research showing strong correlation between 
microbial biomass and soil C availability (e.g., 
Wardle 1998). However, our analysis also indicated 
that microbial biomass C concentration was strongly 
associated with the soil microbial N and P content, 
suggesting that the stoichiometry of the soil microbial 
biomass is strictly dehned. Similarly, while plant 
foliar element ratios do reflect the low-to-high 
latitude increases in the relative abundance of soil

N versus soil P (Reich and Oleksyn 2004), microbial 
N:P ratios in soil microbial biomass do not vary with 
latitude, and do not correlate with the soil N:P supply 
ratio (Fig. 4); instead, microbial N:P ratios appear 
hxed in “Redheld-like” proportions, indicating 
homeostatic control of nutrient ratios. The relatively 
strict nutrient requirements of the soil microbial 
biomass— combined with the relative P-poor status of 
many low latitude soils—provides on explanation for 
the observation that P often limits both microbial 
biomass and activity in these ecosystems (e.g., 
Gallardo and Schlesinger 1994; Cleveland et al. 
2002; Cleveland and Townsend 2006). In any case, 
strong linear relationships between all elements also 
indicate that increases in soil microbial biomass C 
depend on the abundance of sufhcient soil N and P 
to maintain the required microbial element 
stoichiometry.

Do Redheld-like ratios exist for the soil microbial 
biomass?

Our data suggest that as a broadly-dehned group, the 
soil microbial community is homeostatic. Overall, 
microbial C, N and P ratios are strongly and 
positively related, and variations in soil element 
ratios do not signihcantly affect soil microbial 
biomass element ratios (Fig. 4B). The lack of signif­
icant variation in soil microbial element ratios with 
changing environmental ratios (i.e., homeostasis)
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Fig. 4 (A) Microbial N:P ratios as a function of absolute 
latitude; (B) relationship between soil N:P supply ratio and the 
N:P ratio o f the soil microbial biomass

suggests that constrained ratios— akin to Redheld 
ratios— do exist in the soil microbial biomass. As is 
the case in other environments, element ratios do vary 
signihcantly between specihc groups of organisms

(e.g., bacteria versus fungi) within the soil microbial 
biomass (Reiners 1986; Paul and Clark 1996; 
Table 1). On average, however, it appears that soil 
microbial element ratios are essentially hxed.

Based on our analysis, our best estimate of the soil 
microbial biomass C:N:P molar ratio is 60:7:1 
(Table 3), and this value does differ signihcantly 
from the Redheld ratio. Our data indicate that as a 
group, the soil microbial biomass has a higher C:N 
ratio than planktonic organisms, and a lower N:P ratio 
(Table 3). Differences in the C:N ratios likely rehect a 
greater overall investment in structural cellular mate­
rial by the soil microbial biomass (e.g., relatively high 
C:N ratios in fungal biomass) than in the planktonic 
biomass (Paul and Clark 1996; Reiners 1986). The 
lower N:P content of the soil microbial community 
may rehect a higher P demand (and hence lower N:P 
ratios) of soil bacteria relative to marine algae. 
Alternatively, high N:P ratios in marine pbytoplank- 
ton may rehect the higher N demands of chlorophyll- 
rich, pbotosyntbetic organisms that dominate marine 
waters (and exert primary control over Redheld 
stoichiometry; Redheld 1958). However, perhaps 
more striking than the differences between the 
Redheld ratio and microbial element ratios in soil 
are the similarities. Despite the high phylogenetic 
diversity of the soil microbial community, a suite of 
potential errors associated with the FE technique, and 
an enormous range of element ratios among specihc 
plants and plant groups (Table 1), C:N:P content in 
the soil microbial biomass is constrained in a ratio that 
is surprisingly similar to the Redheld ratio (Table 3).

An ecosystem is described as “stoicbiometrically 
balanced” when the C:N:P ratios of autotrophs 
approximate the Redheld ratio of 106:16:1 (Sterner 
and Elser 2002), and this generalization seems

Table 3 Total soil and microbial biomass C, N and P ratios in soil (molar ratios), compared to the Redfield ratio using logio- 
transformed data

Ratio Redfield Microbial biomass Soil

LL Mean UL t P LL Mean UL t P

C:N 6.6 8.1 8.6 9.1 8.38 <0.001 13.5 14.3 15.5 21.58 <0.001

C:P 106 52.5 59.5 66.1 -1 0 .0 6 <0.001 162.2 186.0 213.8 8.24 <0.001

N:P 16 6.2 6.9 7.8 -13 .71 <0.001 11.7 13.1 14.8 -3 .2 7 <0.01

C:N:P 106:16:1 60:7:1 186:13:1

The columns labeled t and P  are the test statistic and probability values associated with the one sample f-tests comparing the 
microbial biomass and soil element ratios to the Redfield ratio (Redfield 1958). LL and UL represent the lower and upper confidence 
limits respectively for the means of the microbial biomass and soil ratios
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broadly applicable to the majority of aquatic ecosys­
tems. One could argue, however, that differences 
between aquatic and terrestrial environments may 
limit the relevance of the Redheld ratio for dehning 
balanced stoichiometry on land. For example, difh- 
culties quantifying “available” soil nutrients could 
confound comparisons of terrestrial organism ele­
ment ratios to the nutrient element ratios of the soil. 
Nonetheless, while reported C:nutrient ratios in tree 
foliage are nearly an order of magnitude higher than 
the Redheld ratio, in both the microbial biomass and 
the total soil nutrient pools, it does appear that: (1) 
there are constrained— and thus predictable— ratio of 
C, N, and P; and (2) the C:N:P ratio of the soil 
microbial biomass approximates the Redheld ratio 
remarkably well (Table 3). These observations sug­
gest that the Redheld ratio per se may be an 
inappropriate standard for dehning the stoichiometric 
balance in terrestrial ecosystems, but the predictable, 
“Redheld-like” element ratios we observed indicate 
that soil may indeed be stoicbiometrically balanced. 
If so, spatial, temporal or site-specihc differences in 
microbial biomass element ratios from the average 
microbial ratio could potentially provide insight into 
the nature of nutrient limitation in terrestrial ecosys­
tems, just as the Redheld ratio does in marine 
ecosystems.

Soil microbial biomass element ratios as indices 
of nutrient limitation

Several studies (Aerts and Chapin 2000; Koerselman 
and Meuleman 1996; Reich and Oleksyn 2004) have 
hypothesized a foliar N:P “breakpoint” between N 
limitation (N:P < 14) and P limitation (N:P > 16), 
indicating that plant N:P ratios may provide a reliable 
index of nutrient limitation in terrestrial ecosystems. 
In many temperate and high latitude sites, relatively 
low average plant N:P ratios (i.e., <14, suggesting 
ecosystem N limitation) are consistent with data from 
myriad nutrient manipulation experiments that show 
direct evidence of N limitation of ecosystem pro­
cesses. Unfortunately, although high average foliar 
N:P ratios (i.e., >16) in tropical forests would suggest 
P limitation, direct evidence of P limitation of 
ecosystem processes in mainland tropical ecosystems 
is rare. Complicating matters, recent analyses indi­
cate that within tropical rain forest sites, foliar N:P

ratios vary widely around the hypothesized N:P 
breakpoint (Townsend et al. 2007), further confound­
ing their use as accurate predictors of nutrient 
limitation in these ecosystems.

Our analysis indicates that N:P stoichiometry of 
the soil microbial biomass is well-constrained 
(Fig. 4), suggesting that measured, site-specihc 
microbial N:P ratios that diverge from the calculated 
average (i.e., 6.9 ± 0.4) may provide insight into the 
nature of ecosystem nutrient limitation, at least within 
lowland tropical ecosystems. For example, at a 
tropical rain forest site on highly weathered, P-poor 
soil in Costa Rica, plant N:P ratios vary widely 
between individual plant species. In addition, the 
range of measured foliar ratios bracketed the N:P 
breakpoint (Townsend et al. 2007), thus limiting their 
usefulness for assessing N versus P limitation at that 
site. However, at the same site, relatively high 
measured microbial N:P ratios (suggesting P limita­
tion) are supported with direct evidence showing that 
low soil P availability strongly limits microbial 
biomass, activity, and other ecosystem processes 
(Cleveland et al. 2002; Cleveland and Townsend 
2006; Reed et al. 2007; Cleveland and Townsend 
2006). Therefore, a more complete picture of nutrient 
limitation within ecosystems— as well as an 
improved understanding of how they are likely to 
respond to anthropogenic nutrient inputs (Galloway 
et al. 2004; Okin et al. 2004)— could both be gained 
via a more comprehensive approach that includes 
measuring not only N:P ratios in plants, but also by 
assessing variability in soil and microbial biomass 
N:P ratios at multiple scales.
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Appendix

Appendix A Studies used in analyses o f soil and microbial biomass C, N and P

Latitude Vegetation type® Soil nutrients
(mmol kg“ ' soil)

Microbial biomass 
(pmol kg“ ' soil)

Citations

Carbon Nitrogen Phosphorus Carbon Nitrogen Phosphorus

11 Grassland 1091.7 63.3 6.3 32.8 2.9 0.7 Agbenin and Adeniyi (2005)

11 Grassland 1991.7 118.6 7.6 29.9 3.4 2.0 Agbenin and Adeniyi (2005)

11 Grassland 1083.3 61.1 6.2 24.9 4.4 0.8 Agbenin and Adeniyi (2005)

11 Grassland 1100.0 78.0 5.5 43.2 5.1 3.5 Agbenin and Adeniyi (2005)

11 Grassland 1216.7 85.1 7.3 32.8 8.5 3.6 Agbenin and Adeniyi (2005)

26 Eorest 4916.7 428.6 - 137.4 15.6 0.7 Arunachalam and Arunachalam (2000)

26 Eorest 4333.3 285.7 - 107.8 15.4 0.6 Arunachalam and Arunachalam (2000)

26 Eorest 4166.7 285.7 - 107.0 16.3 1.0 Arunachalam and Arunachalam (2000)

26 Eorest 4833.3 428.6 - 109.5 16.1 1.2 Arunachalam and Arunachalam (2000)

26 Eorest 3250.0 214.3 - 106.0 15.9 0.9 Arunachalam and Arunachalam (2000)

26 Eorest 3250.0 214.3 - 111.0 15.8 0.5 Arunachalam and Arunachalam (2000)

26 Eorest 2316.7 171.4 - 24.5 8.4 0.6 Arunachalam et al. (1996)

27 Eorest 1375.0 450.0 9.7 66.7 5.6 1.4 Barbhuiya et al. (2004)

27 Eorest 1533.3 571.4 9.0 50.0 6.6 1.1 Barbhuiya et al. (2004)

27 Eorest 1258.3 321.4 13.9 58.3 3.4 0.9 Barbhuiya et al. (2004)

27 Eorest 1108.3 550.0 7.1 91.7 5.7 1.5 Barbhuiya et al. (2004)

43 Grassland 6375.0 328.6 33.4 140.8 - 0.5 Chen et al. (2000a)

43 Eorest 5250.0 250.0 30.6 79.1 - 0.4 Chen et al. (2000a)

29 Eorest 2833.3 212.1 14.2 32.6 - 0.5 Chen et al. (2000b)

43 Grassland 6500.0 305.7 31.6 118.1 - 1.2 Chen et al. (2003)

43 Eorest 5500.0 240.0 27.1 67.3 - 0.9 Chen et al. (2003)

43 Grassland 1625.0 71.4 3.7 22.1 - 0.2 Chen et al. (2004)

43 Grassland 3275.0 271.4 12.9 30.7 - 0.3 Chen et al. (2004)

43 Grassland 10866.7 521.4 19.3 103.7 - 2.6 Chen et al. (2004)

43 Grassland 4416.7 335.7 20.3 41.6 - 0.4 Chen et al. (2004)

43 Grassland 4083.3 221.4 21.4 40.4 - 0.5 Chen et al. (2004)

43 Grassland 2083.3 142.9 22.3 20.4 - 0.3 Chen et al. (2004)
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Appendix A continued

Latitude Vegetation type® Soil nutrients 
(mmol kg“ ' soil)

Microbial biomass 
(pmol kg“ ' soil)

Citations

Carbon Nitrogen Phosphorus Carbon Nitrogen Phosphorus

43 Grassland 3000.0 235.7 26.2 45.8 - 0.4 Chen et al. (2004)

43 Grassland 2416.7 214.3 27.8 47.1 - 1.0 Chen et al. (2004)

43 Grassland 6500.0 478.6 29.2 102.1 - 2.1 Chen et al. (2004)

43 Grassland 4166.7 342.9 30.3 71.2 - 0.5 Chen et al. (2004)

43 Grassland 3333.3 271.4 34.1 67.1 - 1.2 Chen et al. (2004)

43 Grassland 7416.7 442.9 36.4 56.1 - 0.6 Chen et al. (2004)

43 Grassland 4583.3 314.3 42.3 45.8 - 0.6 Chen et al. (2004)

43 Grassland 7750.0 607.1 51.1 71.1 - 1.1 Chen et al. (2004)

43 Grassland 5583.3 500.0 88.6 49.2 - 0.6 Chen et al. (2004)

24 Grassland 616.7 45.0 12.3 13.8 - 0.2 Chen and He (2004)

24 Forest 483.3 37.1 7.1 7.8 - 0.1 Chen and He (2004)

24 Forest 916.7 54.3 12.9 15.5 - 0.2 Chen and He (2004)

24 Forest 333.3 39.3 36.1 11.0 - 0.1 Chen and He (2004)

45 Forest - - - 491.7 32.1 3.0 Christ et al. (1997)

8 Forest 5416.7 428.6 18.0 79.3 17.9 0.6 Cleveland et al. (2004)

8 Forest 5416.7 428.6 18.0 163.9 23.1 0.4 Cleveland et al. (2004)

8 Forest 5666.7 428.6 33.9 79.3 16.5 0.7 Cleveland et al. (2004)

8 Forest 5666.7 428.6 33.9 108.9 15.8 0.6 Cleveland et al. (2004)

25 Forest 3666.7 385.7 26.5 69.3 5.9 1.2 Devi and Yadava (2006)

25 Forest 3583.3 357.1 13.5 44.5 3.4 0.9 Devi and Yadava (2006)

40 Grassland 19583.3 1178.6 38.5 125.0 17.1 1.5 Holland (2006)

40 Grassland 21750.0 1321.4 46.3 233.3 29.3 5.4 Holland (2006)

40 Grassland 15583.3 964.3 31.7 141.7 15.0 1.0 Holland (2006)

40 Grassland 19583.3 1178.6 38.5 233.3 34.3 2.3 Holland (2006)

40 Grassland 21750.0 1321.4 46.3 291.7 66.4 5.0 Holland (2006)

40 Grassland 15583.3 964.3 31.7 125.0 15.0 1.1 Holland (2006)

40 Grassland 19583.3 1178.6 38.5 116.7 13.6 1.1 Holland (2006)

40 Grassland 21750.0 1321.4 46.3 125.0 19.3 2.0 Holland (2006)

40 Grassland 15583.3 964.3 31.7 108.3 9.3 0.8 Holland (2006)

51 Forest - - 14.8 75.4 7.8 2.0 Joergensen et al. (1995)

68 Other 1900.0 100.0 38.7 1158.3 100.0 13.2 Jonasson et al. (1996)

68 Other 1608.3 100.0 80.6 1500.0 100.0 1.6 Jonasson et al. (1996)

68 Other - - - - 49.9 7.1 Jonasson et al. (2006)

49 Grassland 9500.0 550.0 31.0 156.0 19.0 7.8 Kopacek et al. (2004)

49 Grassland 3100.0 200.0 21.0 39.0 3.5 2.3 Kopacek et al. (2004)

2 Grassland - - - 4.9 - 0.3 Kwabiah et al. (2003)

48 Forest 2250.0 114.3 - 183.3 41.1 2.7 Lorenz et al. (2001)

48 Forest - - - 216.7 43.6 2.7 Lorenz et al. (2001)

48 Forest - - - 175.0 37.5 2.5 Lorenz et al. (2001)

48 Forest - - - 133.3 32.5 2.4 Lorenz et al. (2001)

25 Other 3000.0 285.7 12.6 27.8 4.1 0.6 Maithani et al. (1996)

25 Forest 4500.0 357.1 16.8 56.8 6.4 0.8 Maithani et al. (1996)
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Appendix A continued

Latitude Vegetation type® Soil nutrients 
(mmol kg“ ' soil)

Microbial biomass 
(pmol kg“ ' soil)

Citations

Carbon Nitrogen Phosphorus Carbon Nitrogen Phosphorus

25 Forest 5166.7 428.6 19.2 90.7 8.9 1.4 Maithani et al. (1996)

45 Grassland 3583.3 185.7 - 100.3 10.1 0.9 McIntosh et al. (1999)

20 Grassland 950.0 43.4 2.9 - - - Northup et al. (1999)

4 Other 2166.7 120.0 7.0 26.8 3.6 0.3 Oberson et al. (2001)

46 Grassland 7083.3 271.4 - 246.7 29.4 4.5 Ross et al. (1997)

46 Grassland 6750.0 285.7 - 242.5 25.9 4.4 Ross et al. (1997)

38 Forest 9666.7 400.0 9.3 133.3 17.3 3.1 Ross et al. (1999)

38 Grassland 6833.3 292.9 32.2 71.5 7.0 1.6 Ross et al. (1999)

38 Forest 9166.7 492.9 44.8 133.3 14.1 4.7 Ross et al. (1999)

38 Forest 9666.7 400.0 9.3 914.2 97.9 9.2 Ross et al. (1999)'’

38 Forest 9166.7 492.9 44.8 946.7 126.4 14.8 Ross et al. (1999)'’

38 Forest 9666.7 400.0 9.3 380.0 50.0 13.6 Ross et al. (1999)

38 Forest 9166.7 492.9 44.8 270.8 32.4 7.5 Ross et al. (1999)

25 Forest 2041.7 123.6 10.6 21.3 2.2 0.4 Roy and Singh (1994)

25 Forest 950.0 54.3 7.7 28.9 3.1 0.5 Roy and Singh (1994)

37 Forest 39083.3 476.4 10.3 1125.0 - 6.8 Saggar et al. (1998)

44 Grassland 1666.7 110.0 15.8 41.5 7.0 0.7 Saggar et al. (1999)

44 Grassland 1250.0 87.1 15.2 30.6 5.4 0.4 Saggar et al. (1999)

44 Grassland 1358.3 99.3 16.1 33.3 7.2 0.5 Saggar et al. (1999)

49 Forest 4833.3 278.6 21.6 - 3.6 0.3 Santmckova et al. (2004)

49 Forest 3583.3 192.9 27.1 - 2.2 0.3 Santmckova et al. (2004)

49 Forest 4416.7 157.1 16.8 - 5.1 0.5 Santmckova et al. (2004)

49 Forest 4833.3 278.6 21.6 - 25.8 2.3 Santmckova et al. (2004)

49 Forest 3583.3 192.9 27.1 - 28.9 2.8 Santmckova et al. (2004)

49 Forest 4416.7 157.1 16.8 - 27.6 2.9 Santmckova et al. (2004)

49 Forest 4833.3 278.6 21.6 - 33.1 3.3 Santmckova et al. (2004)'’

49 Forest 3583.3 192.9 27.1 - 21.7 3.6 Santmckova et al. (2004)b

49 Forest 4416.7 157.1 16.8 - 53.8 4.2 Santmckova et al. (2004)'’

- Other - - - 110.6 13.4 2.5 Sarathchandra et al. (1989)

30 Other - - - - 1.9 0.4 Sarig et al. (1996)

30 Other - - - - 3.9 0.4 Sarig et al. (1996)

30 Other - - - - 2.7 0.4 Sarig et al. (1996)

30 Other - - - - 1.7 0.3 Sarig et al. (1996)

30 Other - - - - 3.1 0.4 Sarig et al. (1996)

30 Other - - - - 6.1 0.7 Sarig et al. (1996)

31 Forest - - - 26.1 2.9 0.7 Schilling and Lockaby (2005)

31 Forest - - - 30.5 3.2 1.3 Schilling and Lockaby (2005)

31 Forest - - - 43.0 4.5 0.9 Schilling and Lockaby (2005)

31 Forest - - - 37.5 4.5 0.5 Schilling and Lockaby (2005)

31 Forest - - - 70.7 6.7 1.0 Schilling and Lockaby (2005)

31 Forest - - - 50.9 5.4 0.6 Schilling and Lockaby (2005)

68 Other 9470.8 306.0 8.3 666.7 69.5 9.1 Schmidt et al. (2002)
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Appendix A continued

Latitude Vegetation type® Soil nutrients 
(mmol kg“ ' soil)

Microbial biomass 
(pmol kg“ ' soil)

Citations

Carbon Nitrogen Phosphorus Carbon Nitrogen Phosphorus

68 Other 1402.8 47.6 2.7 770.8 81.9 4.3 Schmidt et al. (2002)

69 Other 7854.2 216.7 10.5 1508.3 138.8 9.1 Schmidt et al. (2002)

69 Other 17859.7 782.1 11.8 379.2 23.9 0.8 Schmidt et al. (2002)

27 Grassland 2666.7 202.9 26.8 72.0 10.1 1.4 Sharma et al. (2004)

27 Grassland 2166.7 176.4 21.3 59.3 6.9 1.0 Sharma et al. (2004)

27 Grassland 1250.0 170.0 21.0 63.7 5.1 1.0 Sharma et al. (2004)

25 Forest 1500.0 92.9 4.5 64.7 8.4 1.2 Singh and Singh (1995)

25 Forest 2483.3 135.7 3.5 73.0 9.9 1.4 Singh and Singh (1995)

25 Forest 1841.7 92.9 4.2 58.7 7.3 0.9 Singh and Singh (1995)

25 Forest 408.3 21.4 4.2 30.3 3.7 0.5 Singh and Singh (1995)

25 Other 1333.3 78.6 3.5 44.5 6.2 0.8 Singh and Singh (1995)

24 Other 833.3 78.6 5.5 32.9 2.5 0.5 Singh et al. (1991)

24 Other 1000.0 77.9 8.1 30.1 2.6 0.5 Singh et al. (1991)

26 Forest 2583.3 221.4 12.5 64.8 4.6 0.9 Singh et al. (2001)

68 Other 34250.0 - - 2500.0 178.6 11.6 Sjursen et al. (2005)

41 Forest 5000.0 150.0 27.4 29.3 4.4 6.2 Sparling et al. (1994)

41 Other 6000.0 328.6 37.1 28.5 7.1 10.9 Sparling et al. (1994)

- Grassland 750.0 87.9 9.4 22.6 - 0.6 Srivastava and Singh (1988)

- Other 1333.3 155.0 17.1 48.8 - 1.0 Srivastava and Singh (1988)

24 Forest 1816.7 159.7 11.6 50.8 4.6 0.8 Srivastava and Singh (1991)

24 Other 1004.2 76.1 4.8 33.1 2.7 0.6 Srivastava and Singh (1991)

24 Forest 1933.3 210.7 11.3 31.1 1.6 0.5 Srivastava (1998)

24 Forest 1700.0 168.6 11.9 35.8 1.9 0.5 Srivastava (1998)

24 Other 1000.0 77.9 8.1 17.8 1.7 0.3 Srivastava (1998)

24 Other 1033.3 80.0 6.5 18.8 1.0 0.4 Srivastava (1998)

70 Other - - - 616.7 25.6 1.4 Stark and Grellmann (2002)

70 Other - - - - 25.0 0.9 Stark et al. (2002)

71 Other - - - - 8.3 2.3 Stark et al. (2002)

68 Other - - - - 35.5 0.9 Stark et al. (2002)

- Grassland 3250.0 214.3 25.8 34.3 4.1 1.0 Turner et al. (2001)

- Grassland 2583.3 214.3 32.3 43.4 7.5 1.3 Turner et al. (2001)

- Grassland 3916.7 357.1 41.9 58.2 9.2 2.2 Turner et al. (2001)

- Grassland 2583.3 214.3 25.8 60.3 8.5 2.6 Turner et al. (2001)

- Grassland 2750.0 285.7 29.0 68.2 9.9 2.5 Turner et al. (2001)

- Grassland 4166.7 357.1 19.4 71.0 4.3 2.1 Turner et al. (2001)

- Grassland 3333.3 214.3 12.9 75.0 6.2 2.2 Turner et al. (2001)

- Grassland 2500.0 214.3 16.1 76.9 8.4 2.5 Turner et al. (2001)

- Grassland 2416.7 285.7 32.3 78.4 9.5 3.1 Turner et al. (2001)

- Grassland 4666.7 428.6 32.3 80.4 11.4 1.8 Turner et al. (2001)

- Grassland 3666.7 357.1 32.3 88.2 11.4 2.6 Turner et al. (2001)

- Grassland 5000.0 357.1 35.5 93.0 13.6 2.2 Turner et al. (2001)

- Grassland 3333.3 285.7 19.4 101.7 14.0 3.1 Turner et al. (2001)
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Appendix A continued

Eatitude Vegetation type® Soil nutrients 
(mmol kg“ ' soil)

Microbial biomass 
(pmol kg“ ' soil)

Citations

Carbon Nitrogen Phosphorus Carbon Nitrogen Phosphorus

- Grassland 3750.0 285.7 41.9 103.2 10.9 2.5 Turner et al. (2001)

- Grassland 4000.0 357.1 29.0 103.6 14.9 2.4 Turner et al. (2001)

- Grassland 3833.3 357.1 35.5 104.0 12.6 3.6 Turner et al. (2001)

- Grassland 4000.0 357.1 25.8 108.3 II .6 4.7 Turner et al. (2001)

- Grassland 4916.7 428.6 48.4 II8 .9 17.5 3.8 Turner et al. (2001)

- Grassland 3750.0 285.7 19.4 II9 .I 7.6 3.3 Turner et al. (2001)

- Grassland 3500.0 285.7 25.8 129.4 12.9 3.8 Turner et al. (2001)

- Grassland 3083.3 285.7 19.4 132.9 12.1 3.9 Turner et al. (2001)

- Grassland 5666.7 571.4 32.3 148.2 18.9 4.3 Turner et al. (2001)

- Grassland 3916.7 357.1 29.0 151.8 I8 .I 3.5 Turner et al. (2001)

- Grassland 4000.0 357.1 32.3 159.0 15.6 4.5 Turner et al. (2001)

- Grassland 5750.0 500.0 32.3 169.8 17.5 5.3 Turner et al. (2001)

- Grassland 3666.7 357.1 32.3 173.4 16.4 4.1 Turner et al. (2001)

- Grassland 5500.0 500.0 29.0 185.3 17.4 5.1 Turner et al. (2001)

- Grassland 5333.3 500.0 25.8 185.7 16.2 4.0 Turner et al. (2001)

- Grassland 6666.7 642.9 64.5 284.3 24.7 7.7 Turner et al. (2001)

24 Eorest 1047.5 - - I I .I 2.4 0.4 W ang et al. (2004)

- Grassland - - - 81.4 7.4 1.5 W est et al. (1986)

- Grassland - - - 42.4 7.9 2.3 W est et al. (1986)

35 Eorest 8316.7 - - 56.3 7.9 0.6 W right and Coleman (2000)

35 Eorest 8316.7 - - 45.8 6.6 0.5 W right and Coleman (2000)

35 Eorest 8316.7 - - 68.8 9.8 0.5 W right and Coleman (2000)

42 Eorest 9358.3 - - 57.5 5.6 0.7 W right and Coleman (2000)

42 Eorest 9358.3 - - 81.7 10.9 0.3 W right and Coleman (2000)

43 Eorest 8575.0 - - 45.8 5.7 I.O W right and Coleman (2000)

43 Eorest 8575.0 - - 91.7 12.7 0.9 Wright and Coleman (2000)

43 Eorest 8575.0 - - 55.0 7.3 0.5 W right and Coleman (2000)

10 Eorest 3666.7 250.0 20.6 lO.O 1.2 Yavitt et al. (1993)

45 Eorest - - - 1328.4 271.6 186.0 Yeates and Saggar (1998)

45 Grassland - - - 932.4 217.0 108.5 Yeates and Saggar (1998)

Cases where specific data were not available are denoted by (-)

® Vegetation types besides grassland and forest were ignored for the vegetation analysis

Data obtained from litter layer
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