DEBATING SCIENCE:
PRACTICAL REASONING AND GLOBAL CLIMATE CHANGE

GEOL495/PHIL495
Instructors:
Rebecca Bendick, Assistant Professor, Department of Geosciences, University of Montana
Clark Wolf, Director of Bioethics, Department of Philosophy, Iowa State University
Fall 2007
On-line (asynchronous): September 3 to December 14

COURSE PURPOSE
Traditionally there has been little formal effort through coursework to bridge the gap between scientific research and social debates arising from the ethical implications of technological innovations. Consequently, specialists are more comfortable within their area of expertise. But in the case of climate change, the forces driving research are so strong and the public’s lack of knowledge so great that society needs scientists to cross the gap between scientific discourse and public debate. Scientists need to become productive participants in the arena of ethical deliberation.

It is equally important for scientists to understand that climate change is not only a research problem. The articulation of an appropriate climate policy will require negotiation among international participants who have different interests and needs. If the process by which an acceptable policy is reached must be fair and democratic, then these normative concepts must also play an important role in the process. Because of this, scientists need to understand how scientific findings can appropriately be incorporated into public debate about issues, and must be prepared to situate scientific considerations within a democratic public debate.

This course is designed to help address this need. It entails in-depth study of the international debate over the role of anthropogenic greenhouse gasses [GHG] in the atmosphere and their influence on global climate.

COURSE OBJECTIVES AND OUTCOMES
The course has three objectives and expected learning outcomes. The first is for students to become better informed about the many scientific, ethical, social and political issues arising from global climate change. For example, what is the current scientific understanding of the global carbon cycle? How would changes to carbon emissions affect the global economy? How might the burden of GHG reductions be equitably shared among developed and developing countries? What conditions would make an international GHG reduction plan fair and democratic? How do climate change models influence global natural hazards risk assessments? The second is for students to become adept at engaging in informed, deliberative dialogue on the important scientific, ethical, social and political issues arising from this debate. Finally, the ultimate objective is to help students develop the relevant skills of practical reasoning in relation to social and ethical controversies surrounding global climate. Students will gain the tools they need to enter into productive social deliberations at scales from the local to the global.

COURSE STRUCTURE
This course is structured around a particular model of practical reasoning/deliberative dialogue. Practical reasoning/deliberative dialogue is concerned with making real-life decisions about setting and prioritizing goals and selecting the appropriate means to achieve these goals. There are 5 areas to be considered in this model: (1) Articulating, establishing and prioritizing goals, (2) Identifying the available alternatives and research programs for achieving these goals, (3) Anticipating and evaluating unwanted side effects that might undermine the pursuit these goals via the various alternatives, (4) Identifying and evaluating major obstacles that might prevent reaching these goals via the various alternatives, (5) Establishing the burden of proof, weighing the presumptive case for each of the alternatives, and coming to a conclusion about policy. In sum, students in this course will be learning how to deliberate together to settle on the right goals to pursue, weighing the various option for achieving these goals, and arriving at the right
(moral) and best (most effective and efficient) course of action. Students will spend the last part of the course collaborating on a policy document representing their conclusions about the development of nanotechnologies.

COURSE OUTLINE
I. Exploring the problem of global climate
II. The current and scientific reality
III. The unique ethical issues of anthropogenic climate change
IV. Scientific and ethical barriers to reducing greenhouse gases
V. Developing Policy Alternatives

ASSIGNMENTS AND GRADING (Traditional Letter Grade Option)

Course Readings: There will be approximately 40 pages of course readings per week. Course readings will consist of scholarly articles, book chapters and popular essays written by scientists, activists, philosophers, public policy experts, and others who are making significant contributions to this debate. The will be organized around the six areas in the course outline above.

Quizzes (25% of grade): There will be five quizzes. The quizzes are designed to assess the first objective or learning outcome. They will cover the course reading to evaluate how well informed students are of the major ethical, social and political issues in the debate over climate change.

Discussion Boards (25%): There will be asynchronous discussion boards to help students master the course readings. Each discussion board will be given a particular topic taken from the course readings. A one-week time period will be provided for each discussion topic. Evaluation of students’ activities on the discussion board will be tied to the second course objective, or learning outcome, for students to become adept at informed, deliberative dialogue on the important scientific, ethical, social and political issues.

Final Policy Document (25%): A major portion of this course will be a group project. It consists of writing a policy document summarizing the course deliberation about global climate change. This project will be tied to the final learning outcome, for students develop the relevant skills of practical reasoning in relation to social and ethical controversies.

GRADING
The +/- grading system will be used as follows: 93-100 = A; 90-92 = A-; 87-89 = B+; 83-86 = B; 80-82 = B-; 77 - 79 = C+; 73 - 76 = C; 70 - 72 = C-; 67 - 69 = D+; 63 - 66 = D; 60 - 62 = D-; Below 60 = F.