Accessible Navigation. Go to: Navigation Main Content Footer
Decoration Image Decoration Image Decoration Image


-- scientific and technical aspects of the most popular geoengineering proposals --

A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z


Abate, R. (2010). Sowing Seeds Uncertain: Ocean Iron Fertilization, Climate Change, and the International Environmental Law Framework. Pace Environmental Law Review, 27, 555-598.

Abate, R. (2011). A tale of two carbon sinks: Can forest carbon management serve as a framework to implement ocean iron fertilization as a climate change treaty compliance mechanism?. Seattle Journal of Environmental Law [Online]. 

Ackerman, A. S., Toon, O. B., & Hobbs, P. V. (1993). Dissipation of marine stratiform clouds and collapse of the marine boundary layer due to the depletion of cloud condensation nuclei by clouds. Science, 262, 226-229.

Adhiya, J. & Chisolm, S. W. (2001). Is Ocean Fertilization a Good Carbon Sequestration Option?. MIT [Online].

Akbari, H., Menon, S., & Rosenfeld, A. (2009). Global cooling: Increasing world-wide urban albedos to offset CO2Climatic Change, 94, 275-286. [Online]

Albrecht, B. A. (1989). Aerosols, cloud microphysics and fractional cloudiness. Science, 245, 1227-1230.

Allen, M. R., Frame, D. J., Hunting, C., Jones, C. D., Lowe, J. A., Meinshausen, M., et al. (2009). Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature, 458, 1163-1166.

Allsopp, M., Santillo, D., & Johnston, P. (2007). A scientific critique of oceanic iron fertilization as a climate change mitigation strategy. Greenpeace Research Laboratories, Technical Note [Online].

Angel, R. (2006). Feasibility of cooling the Earth with a cloud of small spacecraft near the inner Lagrange point (L1). Proceedings of the National Academy of Sciences of the United States of America, 103, 17184-17189. [Online]

Apps, M. et al. (2001). Technological and economic potential of options to enhance, maintain, and manage biological carbon reservoirs and geo-engineering. Cambridge University Press.

Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, U., et al. (2009). Atmospheric Lifetime of Fossil Fuel Carbon Dioxide. Annual Review of Earth Planetary Science, 37, 117-134.

Arrigo, K. R. et al. (1999). Phytoplankton community structure and the drawdown of nutrients and carbon dioxide in the Southern Ocean. Science, 283, 365-367. [Online]

Aumont, O. & Bopp, L. (2006). Globalizing results from ocean in situ iron fertilization studies. Global Biogeochemical Cycles, 20, 1-15. [Online]


Bakker, D. C. E. (2004). Storage of carbon dioxide by greening the ocean. Island Press.

Bala, G. & Caldeira, K. (2000). Geoengineering Earth's radiation balance to mitigate CO2- induced climate change. Geophysical Research Letters, 27, 2141-2144. [Online]

Bala, G., Caldeira, K., Duffy, P. B. (2003). Geoengineering Earth's radiation balance to mitigate climate change from a quadrupling of CO2Global Planetary Change, 37, 157-168.

Bala, G., Caldeira, K., & Nemani, R. (2010). Fast versus slow response in climate change: implications for the global hydrological cycle. Climate Dynamics, 35, 423-434. [Online]

Bala, G. Caldeira,K., Nemani,R., Cao,L., Bann-Weiss,G., Skamarock,W.C. (2010). Albedo enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle. Climate Dynamics, 37, 1-17. [Online]

Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B., Delire, C., et al. (2007). Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences of the United States of America, 104, 6550-6555. [Online]

Bala, G., Duffy, P. B., & Taylor, K. E. (2008). Impact of geoengineering schemes on the global hydrological cycle. Proceedings of the National Academy of Sciences of the United States of America, 105, 7664-7669. [Online]

Bala, G. & Nag, B. (2010). Albedo enhancement over land to counteract global warming: impacts on hydrological cycle. Climate Dynamics, [Online].

Bala, G, Thompson, S., Duffy, P. B., Caldeira, K., Delire, C. (2002). Impact of geoengineering schemes on the terrestrial biosphere. Geophysical Research Letters, 29, 2. 

Bann-Weiss, G. A. & Caldeira, K. (2010). Geoengineering as an optimization problem. Environmental Research Letters, 5, 1-9. [Online]

Barnosky, A. D., Hadly, E. A., Bascompte, J., Berlow, E.L., Brown, J. H., Fortelius, M., et al. (2012). Approaching a state shift in Earth's bioshpere. Nature, 486(7401) 52-58. [Online]

Bernstein, D. N., Neelin, J. D., Li, Q. B., & Chen, D. (2012). Could aerosol emissions be used for regional heat wave mitigation?. Atmospheric Chemistry and Physics Discussions, 12(9), 23793–23828 [Online]. 

Bergquist, B. A. & Boyle, E. A. (2011). Dissolved iron in the tropical and subtropical Atlantic ocean. Global Biogeochemical Cycles, 20. [Online]

Bertram, C. (2009). Ocean Iron Fertilization: An Option for Mitigating Climate Change? (Rep. No. Kiel Policy Brief No. 3). Kiel Institute for the World Economy [Online].

Bertram, C. (2010). Ocean iron fertilization in the context of the Kyoto protocol and the post-Kyoto process. Energy Policy, 38, 1130-1139. [Online]

Betts, R. A. (2000). Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature, 408, 187-190.

Bewick, R., Sanchez, J. P., McInnes, C. R. (2012). Gravitationally bound geoengineering dust shade at the inner Lagrange point. Advances in Space Research, 50(10), 1405-1410 [Online].

Bewick, R., Lücking, C., Colombo, C., Sanchez, J.P., McInnes, C.R. (2012). Heliotropic dust rings for earth climate engineering. Advances in Space Research. [Online

Bhattacharya, A. (2009). Germany clears Indo-German Antarctic expedition. The Times of India [Online].

Bickel, J. E. (2013). Climate engineering and climate tipping-point scenarios. Environ Syst Decis. (in press). [Online]

Biello, D. (2009). Pulling CO2 from the Air: Promising Idea, Big Price Tag. Yale Environment 360 [Online]. 

Black, R. (2009). Setback for climate technical fix. BBC Mobile News [Online]. 

Black, R. (2011). Climate 'technical fix' may yield warming, not cooling. BBC News [Online].

Blain, S. et al. (2001). A biogeochemical study of the island mass effect in the context of the iron hypothesis: Kerguelen Islands, Southern Ocean. Deep-Sea Research I, 48, 163-187.

Blain, S. et al. (2007). Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature, 446. [Online

Blaustein, R. (2011). Fertilizing the Seas with Iron. Bioscience, 61, 840.

Bluth, G. J. S. et al. (1992). Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions. Geophysical Research Letters, 19, 151-154. [Online]

Bordi, I., Fraedrich, K., Sutera, A., Zhu, X. (2012). On the effect of decreasing COconcentration in the atmosphere. Climate Dynamics. [Online]

Boucher, O. & Folberth, G. A. (2010). New Directions: Atmospheric methane removal as a way to mitigate climate change? Atmospheric Environment, 44, 3343-3345. [Online]

Bowd, P. W. & Ellwood, M. J. (2010). The biogeochemical cycle of iron in the ocean. Nature Geoscience, 3, 675-682. [Online]

Bower, K. et al. (2006). Computational assessment of a proposed technique for global warming mitigation via albedo-enhancement of marine stratocumulus clouds. Atmospheric Research, 82, 328-336.

Bowie, A. R. et al. (2001). The fate of added iron during a mesoscale fertilisation experiment in the Southern Ocean. Deep-Sea Research, 48, 2703-2743. [Online]

Boyd, P. W. et al. (2000). A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407, 695-702. [Online]

Boyd, P. W. et al. (2001). Control of phytoplankton growth by iron supply and irradiance in the sub-Antarctic Southern Ocean: experimental results from the SAZ project. Journal of Geophysical Research, 106, 31573-31582. [Online]

Boyd, P. W. et al. (2007). Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science, 315, 612-617. [Online]

Boyd, P. (2004). Ironing Out Algal Issues in the Southern Ocean. Science, 304, 396-397. [Online

Braesicke, P., Morgenstern, O., & Pyle, J. A. (2011). Might dimming the sun change atmospheric ENSO teleconnections as we know them?. Atmospheric Science Letters, 12(2), 184-188. [Online]

Brovkin, V. et al. (2009). Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure. Climatic Change, 92, 243-259. [Online]

Buesseler, K. (2007). Revisiting carbon flux through the ocean's twilight zone. Science, 316, 567-570. [Online]

Buesseler, K. et al. (2008). Ocean iron fertilization- Moving forward in a sea of uncertainty. Science, 319, 162. [Online]

Buesseler, K. & Boyd, P. K. (2003). Will ocean fertilization work?. Science, 300, 67-68. [Online]


Caldeira, K., Rau, G.H. (2000). Accelerating carbonate dissolution to sequester carbon dioxide in the ocean. Geophysical Research Letters, 27, 225-228.

Caldeira, K. & Wickett, M. (2003). Anthropogenic carbon and ocean pH. Nature, 425, 365-368.

Caldeira, K. & Wood, L. (2012). Global and Arctic climate engineering: numerical model studies. Philosophical Transactions of the Royal Society A, 366, 4039-4056. [Online]

Canadell, J. G., Le Quere, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Cias, P., et al. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America, 104, 18866-18870.

Cao, L. & Caldeira, K. (2010). Can ocean fertilization mitigate ocean acidification? Climatic Change, Springer Netherlands, 99, 1-2. [Online]

Cao, L., Bala, G., Caldeira, K. (2012). Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks. Environmental Research Letters 7(3), 34015. [Online]

Cassar, N. et. al. (2007). The Southern Ocean biological response to Aeolian iron deposition. Science, 317, 1067-1070.

Chadwick, R., Wu, P., Good, P., Andrews, T. (2012). Asymmetries in tropical rainfall and circulation patterns in idealised CO2 removal experiments. Climate Dynamics. [Online]

Charlson, R. J. et al. (1987). Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature, 326, 655-661.

Chen, Y.-C., Christensen, M. W., Xue, L., Sorooshian, A., Stephens, G. L., Rasmussen, R. M., Seinfeld, J. H. (2012). Occurrence of lower cloud albedo in ship tracks. Atmospheric Chemistry and Physics 12(17), 8223–8235. [Online]

Chisholm, S. W. (2001). Dis-crediting ocean fertilization. Science, 294, 309.

Coale, K. H. et al. (1996). A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 383, 495-501.

Coale, K. H. et al. (1998). Iron Ex-I, an in situ iron-enrichment experiment: experimental design, implementation and results. Deep Sea Research Part II, 45, 919-945.

Coale, K. (2009). Iron fertilization. Encyclopedia of Ocean Sciences, 331-342.

Coale, K. H. et al. (2004). Southern ocean iron enrichment experiment: Carbon cycling in high- and low Si waters. Science, 304, 408-414.

Crabbe, M. J. C. (2009). Modelling effects of geoengineering options in response to climate change and global warming: Implications for coral reefs. Computational Biology & Chemistry, 33, 415-420. 

Crutzen, P. (2006). Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climate Change, 77, 211-219. [Online]

Cullen, J. J. & Boyd, P. W. (2008). Predicting and verifying the intended and unintended consequences of large-scale ocean iron fertilization. Marine Ecology Progress Series, 364, 295-301.


Davidson, P. et al. (2012). Lifting options for stratospheric aerosol geoengineering: advantages of tethered balloon systems. Philosophical Transactions of the Royal Society A, 370(1974), 4263-4300. [Online]

De Baar, H. J. W. (2005). Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. Journal of Geophysical Research, 110. [Online]

De Baar, H. J. W. et al. (2008). Efficiency of carbon removal per added iron in ocean iron fertilization. Marine Ecology Progress Series, 364, 269-282. [Online]

De Baar, H. J. W. et al. (1990). On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia Seas. Marine Ecology Progress Series, 65, 105-122.

de Ramon N‘Yeurt, A., Chynoweth, D. P., Capron, M. E., Stewart, J. R., Hasan, M. A. (2012). Negative carbon via ocean afforestation. Process Safety and Environmental Protection, 90(6), 467–474. [Online]

Dean, J. (2009). Iron Fertilization: A Scientific Review with International Policy Recommendations. Environs Environmental Law & Policy, 32, 321-344. [Online]

Denman, K. L. (2008). Climate change, ocean processes and ocean iron fertilization. Marine Ecology Progress Series, 364, 219-225. [Online]

Diaz, R. J., Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321, 926-929. [Online]

Dickinson, R. E. (1996). Climate engineering. A review of aerosol approaches to changing the global energy balance. Climatic Change, 33, 279-290.

Doughty, C. E., Field, C. B., & McMillan, A. M. S. (2011). Can crop albedo be increased through the modification of leaf trichomes, and could this cool regional climate? Climatic Change, 104, 379–387. [Online]

Driscoll, S., Bozzo, A., Gray, L.J., Robock, A., Stenchikov, G. (2012). Coupled model intercomparison project 5 (CMIP5) simulations of climate following volcanic eruptions. Journal of Geophysical Research, 117(D17). [Online]

Duggen, S. et al. (2007). Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: Evidence from biogeochemical experiments and satellite data. Geophysical Research Letters, 34, 1-5. [Online]

Duke, J. H. (2009). Geoengineering proposal to leverage Earth's natural cooling mechanisms. America's Climate Choices. [Online]


Early, T. (1989). Space-based solar shield to offset greenhouse effect. Journal of the British Interplanetary Society, 42, 567-569.

Eiliseev, A. V. & Mokhov, I. I. (2009). Estimating the Efficiency of Mitigating and Preventing Global Warming with Scenarios of Controlled Aerosol Emissions into the Stratosphere. Izvestiya Atmospheric & Oceanic Physics, 45, 221-232.

Eiliseev, A. V., Mokhov, I. I., & Karpenko, A. A. (2009). Global warming mitigation by means of controlled aerosol emissions into the stratosphere: Global and regional peculiarities of temperature response as estimated in IAP RAS CM simulations. Atmospheric & Oceanic Optics, 22, 388-395.

Eiliseev, A. V. et al. (2010). Global warming mitigation by sulphur loading in the stratosphere: dependence of required emissions on allowable residual warming rate. Theoretical & Applied Climatology, 101, 67-81. [Online]

Elliot, S. et al. (2001). Compensation of atmospheric CO2 buildup through engineered chemical sinkage. Geophysical Research Letters, 28, 1235-1238.

Eppley, R. W. & Peterson, B. J. (1979). Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 282, 677-680.

Evans, J. R. G. et al. (2010). Can oceanic foams limit global warming? Climate Research, 142(2), 155-160. 


Falkowski, P. G. (1995). Ironing out what controls primary production in the nutrient rich waters of the open ocean. Global Change Biology, 1, 161-163.

Falkowski, P. G. (1997). Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature, 387, 272-276.

Fasham, M. J. R. et al., (2006). Development of a robust marine ecosystem model to predict the role of iron in biogeochemical cycles: A comparison of results for iron-replete and iron-limited areas, and the SOIREE iron-enrichment experiment. Deep-Sea Research I, 53, 333-366.

Feingold, G. et al. (1998). Simulations of marine stratocumulus using a new microphysical parameterization scheme. Atmospheric Research, 47-48, 505-528.

Feingold, G. et al. (1999). Impact of giant cloud condensation nuclei on drizzle formation in marine stratocumulus: implications for cloud radiative properties. Journal of Atmospheric Science, 56, 4100-4117. [Online]

Frogner, P., Gislason, S.R., & Oskarsson, N. (2001). Fertilizing potential of volcanic ash in ocean surface water. Geology, 29, 487-490.

Fuhrman, J. A. (1991). Possible biogeochemical consequences of iron fertilization. Limnology & Oceanography, 36, 1951-1959. [Online]

Fyfe, J. C., Cole, J. N. S., Arora, V. K., & Scinocca, J. F. (2013). Biogeochemical carbon coupling influences global precipitation in geoengineering experiments. Geophysical Research Letters, doi: 10.1002/grl.50166. [Online]



Galbraith, E. D. et al. (2010). Regional impacts of iron-light colimitation in a global biogeochemical model. Biogeosciences, 7, 1043-1064.

Ganjuly, D. et al. (2012). Climate response of the South Asian monsoon system to anthropogenic aerosols. Journal of Geophysical Research, 117(D13), 1984-2012. [Online]

Gaskill, A. (2004). Global Albedo Enhancement Project. Global Albedo Enhancement Project. [Online]

Gaunt, J. & Lehmann, J. (2008). Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environmental Science & Technology, 42, 4152-4158.

Gervais, F., Riebessel, U., & Gorbunov, M.Y. (2002). Change in primary productivity and chlorophyll: A response to iron fertilization in the Southern Polar Frontal Zone. Limnology & Oceanography, 47, 1324-1335.

Glibert, P. et al. (2008). Ocean urea fertilization for carbon credits poses high ecological risks. Marine Pollution Bulletin, 56, 1049-1056.

Glibert, P. (2008). Scientists take a stand against ocean fertilization with urea. A World of Science, 6, 15-16. [Online]

Gnanadesikan, P., Sarmiento, J. L., & Slater, R. D. (2003). Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production. Global Biogeochemical Cycles, 17, 1-19. [Online]

Goeppert, A., Czaun, M., May, R. B., Surya Prakash, G. K., Olah, G. A., & Narayanan, S. R. (2011). Carbon Dioxide Capture from the Air Using a Polyamine Based Regenerable Solid Adsorbent. Journal of the American Chemical Society, 133(50), 20164–20167. [Online]

Govindasamy, B.Thompson, S., Duffy, P.B., Caldeira, K., & Delire, C. (2002). Impact of geoengineering schemes on the terrestrial biosphere. Geophysical Research Letters29(22), 2061. [Online]

Graf, H. F. et al. (1993). Pinatubo eruption winter climate effects. Climate Dynamics, 9, 81-93.  

Güssow, K. et al. (2009). Ocean iron fertilization: Why further research is needed. Kiel Institute for the World Economy.


Hamwey, R. M. (2007). Active amplification of the terrestrial albedo to mitigate climate change: An exploratory study. Mitigation and Adaptation Strategies for Global Change, 12, 419-439. [Online]

Hangx, S. J. & Spiers, C. J. (2009). Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability. International Journal of Greenhouse Gas Control, 3, 757-767. [Online]

Hare, C. E. et al. (2005). Phytoplankton community structure changes following simulated upwelled iron inputs in the Peru upwelling region. Aquatic Microbial Ecology, 38, 269-282.

Harrison, D. P. (2007). Ocean Nourishment in the Philippines - proof of concept report for the Sulu Sea. Earth, Ocean, and Space (Rep. No. EOS-REP-07-008).

Hartmann, J. & Kempe, S. (2008). What is the maximum potential for CO2 sequestration by stimulated weathering on the global scale? Naturwissenschaften, 1159-1164.

Hartmann, J. et al. (2009). High-resolution global CO2-consumption by chemical weathering: What is the contribution of hotspots? Global Planetary Change, 69, 185-194.

Harvey, L. D. D. (2008). Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions. Journal of Geophysical Research, Oceans, 113, 1-21. [Online]

Heckendorn, P. et al. (2009). The impact of geoengineering aerosols on stratospheric temperature and ozone. Environmental Research Letters, 4, 045108. [Online]

Hegerl, G. C. & Solomon, S. (2009). Risks of climate engineering. Science, 325, 955-956. [Online]

Herzog, H. (2003). Assessing the Feasibility of Capturing CO2 from the Air (Rep. No. Pub.No. MIT LFEE 2003-02). Massachusetts Institute of Technology, Laboratory for Energy and the Environment.

Hill, A., Feingold, G., & Jiang, H. (2009). The influence of entrainment and mixing assumption on aerosol–cloud interactions in marine stratocumulus. Journal of Atmospheric Science, 66, 1450-1464.

Hoffert, M. I., Caldeira, K., Benford, G., Criswell, D. R., Green, C., Herzog, H., et al. (2002). Advanced technology paths to global climate stability: energy for a greenhouse planet. Science, 298, 981-987.

Holmes, G. & Keith, D. (2012). An air-liquid contactor for large-scale capture of CO2 from air. Philosophical Transactions of the Royal Society A, 370, 4380-4403. [Online]

Hommel, R. & Graf, H.-F. (2011). Modelling the size distribution of geoengineered stratospheric aerosols. Atmospheric Science Letters, 12(2), 168-174. [Online]

Hopkinson, B. M. et al. (2007). Iron limitation across chlorophyll gradients in the southern Drake Passage: Phytoplankton responses to iron addition and photosynthetic indicators of iron stress. Limnology & Oceanography, 52, 2540-2554.

House, K. et al. (2007). Electrochemical Acceleration of Chemical Weathering as an Energetically Feasible Approach to Mitigating Anthropogenic Climate Change. Environmental Science & Technology, 41, 8464-8470. [Online]

Huesemann, M. H. (2008). Ocean fertilization and other climate change mitigation strategies: an overview. Marine Ecology Progress Series, 364, 243-250. [Online]

Hutchins, D. A. et al. (2002). Response of marine bacterial community composition to iron additions in three iron-limited regimes. Limnology & Oceanography, 47, 997-1011.


Ianson, D., Völker, C. D., Denman, K. L. L., Kunze, E., Steiner, N. S. (2012). The effect of vertical and horizontal dilution on fertilized patch experiments.  Global Biogeochemical Cycles. [Online]

Irvine, P., Ridgwell, A., & Lunt, D.J. (2010). Assessing the regional disparities in geoengineering impacts. Geophysical Research Letters, 37. [Online]

Irvine, P. J. et al. (2009). The fate of the Greenland Ice Sheet in a geoengineered, high CO2 world. Environmental Research Letters, 4, 1-8. [Online]

Izrael, Y. A. et al. (2009). Field studies of geo-engineering method of maintaining a modern climate with aerosol particles. Russian Meteorology & Hydrology, 34, 635-638. [Online]


Jackson, R. B. & Schlesinger, W. H. (2004). Curbing the U.S. carbon deficit. Proceedings of the National Academy of Sciences of the United States of America, 101,15827-15829.

Jacobson, M. Z. & Ten Hoeve, J. E. (2011). Effects of urban surfaces and white roofs on global and regional climate. Journal of Climate, 25(3), 1028-1044. [Online]

Jickells, T. D. et al. (2005). Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308, 67-71.

Jin, X. et al. (2005). The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump. Biogeosciences, 5, 385-406. [Online]

Jin, X. & Gruber, N. (2003). Offsetting the radiative benefit of ocean iron fertilization by enhancing N2O emissions. Geophysical Research Letters, 30, 3-1-3-4.

Johnson, K. S., Gordon, R. M., & Coale, K. H. (1997). What controls dissolved iron concentration in the world ocean? Marine Chemistry, 57, 137-161.

Johnson, K. S. & Karl, D. M. (2001). Is ocean fertilization credible or creditable? Science, 296, 467-468.

Jones, A. et al. (2010). Geoengineering by stratospheric SO2 injection: results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE. Atmospheric Chemistry & Physics, 10, 5999-6006.

Jones, A., Haywood, J., & Boucher, O. (2009). Climate impacts of geoengineering marine stratocumulus clouds. Journal of Geophysical Research, 114, D10106. [Online]

Jones, A., Haywood, J., & Boucher, O. (2011). A comparison of the climate impacts of geoengineering by stratospheric SO2 injection and by brightening of marine stratocumulus cloud. Atmospheric Science Letters, 12(2), 176-183. [Online]

Jones, A. Haywood, J. M. (2012): Sea-spray geoengineering in the HadGEM2-ES Earth-system model: radiative impact and climate response. Atmospheric Chemistry & Physics Discussions, 12(8), 20717–20743. [Online]

Jones, I. S. F. (1996). Enhanced carbon dioxide uptake by the world's oceans. Energy Conservation & Management, 37, 1049-1052.

Jones, I. S. F. (1997). Photosynthetic greenhouse gas mitigation by ocean nourishment. Energy Conservation & Management, 38, S367-S372.

Jones, I. S. F. & Young, H. E. (2009). The potential of the ocean for the management of global warming. International Journal of Global Warming, 1, 43-56.


Keith, D. W., Ha-Duong, M., & Stolaroff, J. K. (2006). Climate strategy with CO2 capture from air. Climatic Change, 74, 17-45. [Online]

Keith, D. W. (2010). Photophoretic levitation of engineered aerosols for geoengineering. Proceedings of the National Academy of Sciences of the United States of America, 107, 1-4. [Online]

Kheshgi, H. S. (1995). Sequestering atmospheric carbon dioxide by increasing ocean alkalinity. Energy, 20, 915-922.

Koch, D. & Hansen, J. (2005). Distant origins of Arctic black carbon: A Goddard Institute for Space Studies ModelE experiment. Journal of Geophysical Research, 110, 1-14. [Online]

Kokkola, H. et al. (2009). Aerosol microphysics modules in the framework of the ECHAM5 climate model - intercomparison under stratospheric conditions. Geoscientific Model Development, 2, 97-112. [Online]

Kolber, Z. S. et al. (1994). Iron limitation of the phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature, 371, 145-149.

Korhonen, H., Carslaw, K. S., & Romakkaniemi, S. (2010). Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport. Atmospheric Chemistry & Physics, 10, 4133-4143. [Online]

Kosugi, T. (2010). Role of sunshades in space as a climate control option. Acta Astronautica, 67, 241-253. [Online]

Köhler, P., Hartmann, J., & Wolf-Gladrow, D. A. (2010). Geoengineering potential of artificially enhanced silicate weathering of olivine. Proceedings National Academy of Science of the United States, 107, 20228-20233.

Köhler, P. et al. (2013). Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology. Environmental Research Letters, 8. [Online]

Kravitz, B. et al. (2009). Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols. Journal of Geophysical Research, 114, 1-7. [Online]

Kravitz, B. et al. (2011). The geoengineering model intercomparison project (GeoMIP). Atmospheric Science Letters, 12, 162-167. [Online]

Krom, M. et al. (2005). Summary and overview of the CYCLOPS P addition Lagrangian experiment in the Eastern Mediterranean. Deep Sea Research Part II: Topical Studies in Oceanography, 52, 3090-3108.


Laakso, A., Partanen, A.-I., Kokkola, H.. Laaksonen, A., Lehtinen, K. E. J.; Korhonen, H. (2012). Stratospheric passenger flights are likely an inefficient geoengineering strategy. Environmental Research Letters, 7(3), S. 34021. [Online]

Lackner, K. S. (2009). Capture of carbon dioxide from ambient air. European Physical Journal Special Topics, 176(1), 93-106. [Online]

Lackner, K. S. et al. (1995). Carbon dioxide disposal in carbonate minerals. Energy, 20, 1153-1170.

Lackner, K. L., Grimes, P., & Ziock, H. J. (1999). The Case for Carbon Dioxide Extraction from Air. SourceBook—The Energy Industry's Journal of Issues, 57, 6-10.

Lackner, K. L., Grimes, P., & Ziock, H. J. (2011). Capturing Carbon Dioxide From Air. U.S.Department of Energy [Online].

Lackner, K. S. & Brennan, S. (2009). Envisioning carbon capture and storage: expanded possibilities due to air capture, leakage insurance, and C-14 monitoring. Climatic Change, 96, 357-378.

Lackner, K. S. (2010). Washing carbon out of the air. Scientific American, June, 66-71.

Lam, P. & Chisholm, S. W. (2002). Iron fertilization of the Oceans: Reconciling Commercial Claims with Published Models. Unpublished paper. [Online]

Lambert, F. et al. (2008). Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature, 452, 616-619. [Online]

Lampitt, R. S., et al. (2008). Ocean fertilization: a potential means of geoengineering? Philosophical Transactions of the Royal Society A, 366, 3919-3945. [Online]

Langer, W. H. et al. (2009). Accelerated weathering of limestone for CO2 mitigation: opportunities for the stone and cement industries. Mining Engineering. [Online]

Langford, A. O. et al. (1996). Transport of the Pinatubo volcanic aerosol to a northern midlatitude site. Journal of Geophysical Research, 100, 9007-9016.

Latham, J. (1990). Control of global warming? Science, 347, 339-340. [Online]

Latham, J. (2002). Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmospheric Science Letters, 3, 52-58.

Latham, J., et al. (2008). Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Philosophical Transactions of the Royal Society A, 366, 3969-3987.

Latham, J., Bower, K., Choularton, T., Coe, H., Connolly, P., Cooper, G., et al. (2012). Marine cloud brightening. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370(1974), 4217–4262. [Online]

Latham, J., Parkes, B., Gadian, A., Salter, S. (2012). Weakening of hurricanes via marine cloud brightening (MCB). Atmospheric Science Letters, 13(4), 231-237. [Online

Law, C. S. & Ling, R. D. (2001). Nitrous oxide flux and response to increased iron availability in the Antarctic Circumpolar Current. Deep Sea Research Part II: Topical Studies in Oceanography, 48, 2509-2527.

Law, C. S. (2008). Predicting and monitoring the effects of large-scale ocean iron fertilization on marine trace gas emissions. Marine Ecology Progress Series, 364, 283-288. [Online]

Leibensperger, E. M. et al. (2012). Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 2: Climate response. Atmospheric Chemistry & Physics, 12, 3349-3362.

Leinen, M. et al. (2009). Why Ocean Iron Fertilization?. Climos. [Online]

Lenton, T. M. & Britton, C. (2006). Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations. Global Biogeochemical Cycles, 20.

Lenton, T. M. & Vaughan, N. E. (2009). The radiative forcing potential of different climate geoengineering options. Atmospheric Chemistry & Physics, 9, 5539-5561. [Online]

Lenton, T. M. et al. (2008). Tipping elements in the Earth's climate system. Proceedings of the National Academy of Sciences of the United States of America, 105(6),1786-1793. [Online]

Levin, Z., Halfon, N., & Alperta, P. (2010). Reassessment of rain enhancement experiments and operations in Israel including synoptic considerations. Atmospheric Research, 97, 513-525.

Lovelock, J. E. & Rapley, C. G. (2007). Ocean pipes could help the earth to cure itself. Nature, 449, 403.

Lovelock, J. (2008). A geophysiologist's thoughts on geoengineering. Philosophical Transactions of the Royal Society A, 366, 3883-3890. [Online]

Lunt, D. J. et al. (2008). ''Sunshade World'': A fully coupled GCM evaluation of the climatic impacts of geoengineering. Geophysical Research Letters, L12710. [Online]


MacDougall, A. H., Avis, C. A., & Weaver, A. J. (2012) Significant contribution to climate warming from the permafrost carbon feedback. Nature Geoscience 5, 719-721. [Online 

MacMartin, D. G., Keith, D. W., Kravitz, B., Caldeira, K. (2012). Management of trade-offs in geoengineering through optimal choice of non-uniform radiative forcing. Nature Climate Change. [Online]

MacMynowski, D. G. et al. (2011). Can We Test Geoengineering? Energy & Environmental Science. [Online]

Mahmoudkhani, M. & Keith, D. W. (2009). Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air—Thermodynamic analysis. International Journal of Greenhouse Gas Control, 3, 376-384. [Online]

Marchetti, C. (1977). Geo-engineering and CO2 problem. Climatic Change, 1, 59-68. [Online]

Marchetti, C. (1976). On geoengineering and the CO2 problem (Rep. No. RM-76-17). [Online]

Markels, M. & Barber, R. T. (2002). Sequestration of Carbon Dioxide by Ocean Fertilization. In M. Mercedes Maroto-Valer, C. Song, & Y. Soong (Eds.), Environmental Challenges and Greenhouse Gas Control for Fossil Fuel Utilization in the 21st Century (pp. 119-157).

Martin, J. H. (1990). Glacial-interglacial CO2 change: the iron hypothesis. Paleooceanography, 5, 1-13.

Martin, J. H., Fitzwater, S.E., & Gordon, R.M. (1990). Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochemical Cycles, 4, 5-12.

Martin, J. H., Gordon, R.M., & Fitzwater, S.E. (1991). The case for iron. Limnology & Oceanography, 36, 1793-1802.

Martin, J. H. et al. (1994). Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 371, 123-129.

Matear, R. J. & Elliot, B. (2004). Enhancement of oceanic uptake of anthropogenic CO2 by macronutrient fertilisation. Geophysical Research Letters, 109.

Matsui, T. et al. (2006). Satellite-based assessment of marine low cloud variability associated 25 with aerosol, atmospheric stability, and the diurnal cycle. Journal of Geophysical Research, 111.

Matthews, H. D. & Caldeira, K. (2007). Transient climate–carbon simulations of planetary geoengineering. Proceedings of the National Academy of Sciences of the United States of America, 104, 9949-9954.

McInnes, C. R. (2002). Minimum Mass Solar Shield for Terrestrial Climate Control. Journal of the British Interplanetary Society, 55, 307-311.

McInnes, C. R. (2011). Space-based geoengineering: challenges and requirements. Journal of Mechanical Engineering & Science, 224, 571-580.

Meleshko, V. P. K. V. M. & Karol, L. (2011). An answer to the paper of A. G. Ryaboshapko "On the taboo on researching in the field of global climate geoengineering." Russian Meteorology & Hydrology, 36, 566-568.

Meinshausen, M. et al. (2009). Greenhouse-gas emission targets for limiting global warming to 2 C. Nature, 458, 1158-1162. [Online]

Menzel, D. W. & Ryther, J. H. (1961). Nutrients limiting the production of phytoplankton in the Sargasso Sea, with special reference to iron. Deep Sea Research Part A, 7, 276-281.

Meskhidze, N. (2006). Phytoplankton and Cloudiness in the Southern Ocean. Science, 314, 1419-1421.

Millstein, D. & Menon, S. (2011). Regional climate consequences of large-scale cool roof and photovoltaic array deployment. Environmental Research Letters, 6(3). [Online]

Minnis, P. et al. (1993). Radiative climate forcing by the Mount Pinatubo eruption. Science, 259, 1411-1415.

MIT Dept. of Civil and Environmental Engineering (2011). The Unintended Consequences of Sulfate Aerosols in the Troposphere and Lower Stratosphere. [Online]

Mitchell, D. L. & Finnegan, W. (2009). Modification of cirrus clouds to reduce global warming. Environmental Research Letters, 4, 1-9. [Online]

Mitchell, D. L., Mishra, S., & Lawson, R. P. (2011). Cirrus Clouds and Climate Engineering: New Findings on Ice Nucleation and Theoretical Basis. In Planet Earth 2011 - Global Warming Challenges & Opportunities for Policy and Practice (pp. 257-288). Intech.

Monastersky, R. (1995). Iron versus the Greenhouse: Oceanographers Cautiously Explore a Global Warming Therapy. Science News, 148, 220.

Moore, J. C., Jevrejeva, J., & Grinsted, A. (2010). Efficacy of geoengineering to limit 21st century sea-level rise. Proceedings of the National Academy of Sciences of the United States of America, 107, 15699-15703. [Online]

Morton, O. (2009). Great White Hope. Nature, 458, 1097-1100.


Naik, V. et al. (2003). Influence of Geoengineered Climate on the Terrestrial Biosphere. Environmental Management, 32, 373-381. [Online]

Niemeier, U., Schmidt, H., & Timmreck, C. (2010). The dependency of geoengineered sulfate aerosol on the emission strategy. Atmospheric Science Letters, 12(2), 189-194.

Nikulshina, V., Gebald, C., & Steinfeld, A. (2009). CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor. Chemical Engineering Journal, 146, 244-248.

Noiri, Y. et al. (2005). Influence of iron and temperature on growth, nutrient utilization rates and phytoplankton species composition in the western subarctic Pacific Ocean during the SEEDS experiment. Progress in Oceanography, 64, 149-166.


Oleson, K. W., Bonan, G. B., & Feddema, J. (2010). Effects of white roofs on urban temperature in a global climate model. Geophysical Research Letters, 37.

Olson, R. J. et al. (2000). Effects of iron enrichment on phytoplankton in the Southern Ocean during late summer: active flourescence and flow cytometric analyses. Deep-Sea Research, 47, 3181-3200.

Oman, L. et al. (2005). Climatic response to high-latitude volcanic eruptions. Journal of Geophysical Research, 110.

Oman, L. et al. (2006). High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophysical Research Letters, 33, L18711.

Oschlies, A. et al. (2010). Climate engineering by artificial ocean upwelling: Channeling the sorcerer's apprentice. Geophysical Research Letters, 37, 1-5. [Online]

Oschlies, A. et al. (2010). Side effects and accounting aspects of hypothetical large-scale Southern Ocean iron fertilization. Biogeosciences, 7, 4017-4035. [Online]


Parekh, P. & Follows, M. J. (2004). Modeling the global ocean iron cycle. Global Biogeochemical Cycles, 18.

Parekh, P., Follows, M. J., & Boyle, E.A. (2005). Decoupling of iron and phosphate in the global ocean. Global Biogeochemical Cycles, 19, 1-16.

Partanen, A. I. (2011). Direct and indirect effects of sea spray geoengineering and the role of injected particle size. Journal of Geophysical Research. [Online]

Pearson, J., Oldson, J., & Levin, E. (2006). Earth rings for planetary environment control. Acta Astronaut, 58, 44-57. [Online]

Pierce, J., Weinsenstein, D., & Keith, D. (2010). Efficient formation of stratospheric aerosol for geoengineering through emission of low-volatility vapours in an aircraft plume. Geophysical Research Letters, 12. 

Pierce, J. R. et al. (2010). Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft. Geophysical Research Letters, 37, 1-5. [Online]

Pollard, R. T. et al. (2009). Southern Ocean deep-water carbon export enhanced by natural iron fertilization. Nature, 457, 577-580. [Online]

Pongratz, J., Lobell, D. B., Cao, L., Caldeira, K. (2012) Crop yields in a geoengineered climate. Nature Climate Change 2(1). [Online]

Pope, F. et al. (2011). Impact of Geo-Engineered Aerosols on Stratospheric Ozone Chemistry. Geophysical Research Abstracts 13(EGU2011-10375). [Online

Pope, F. D., Braesicke, P., Grainger, R. G., Kalberer, M., Watson, I. M., Davidson, P. J., Cox, R. A. (2012). Stratospheric aerosol particles and solar-radiation management. Nature Climate Change. [Online]

Powell, H. (2008). Fertilizing the ocean with iron. Oceanus, 46, 4-9.

Powell, H. (2008). Will ocean iron fertilization work? Oceanus, 46, 10-13.

Powell, H. (2008). What are the possible side effects? Oceanus, 46, 14-17.

Powell, H. (2008). Lessons from nature, models, and the past. Oceanus, 46, 18-21. [Online]


Raiswell, R. et al. (2011). Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: Implications for iron delivery to the oceans. Geochimica et Comochimica Acta, 70, 2765-2780.

Randall, D. A. et al. (1984). Outlook for research on subtropical marine stratiform clouds. Bulletin of the American Meteorological Society, 65, 1290-1301.

Ranjan, M. (2010). Feasibility of Air Capture. Massachusetts Institute of Technology. [Online]

Ranjan, M. & Herzog, H. J. (2011). Feasibility of air capture. Energy Procedia, GHGT-10, 1-8. [Online]

Rasch, P. J., Crutzen, P. J., & Coleman, D. B. (2008). Exploring the geoengineering of climate using straospheric sulfate aerosols: The role of particle size. Geophysical Research Letters, 35, L02809.

Rasch, P. J., Tilmes, S., Turco, R. P., Robock, A., Oman, L., Chen, C. C., et al. (2008). An overview of geoengineering of climate using stratospheric sulphate aerosols.Philosophical Transactions of the Royal Society A, 366, 4007-4037. [Online]

Rasch, P. J., Latham, J., & Chen, C. C. (2009). Geoengineering by cloud seeding: influence on sea ice and climate system. Environmental Research Letters 4[045112],1-9.

Rasch, P. J. (2011). Exploration of planetary geoengineering with climate models. IOP Conf.Series: Earth and Environmental Science, 6.

Rau, G. H. & Caldeira, K. (1999). Enhanced carbonate dissolution: A means of sequestering waste CO2 as ocean bicarbonate. Energy Conservation, 40, 1803-1813.

Rau, G. H. et al. (2007). Reducing energy-related CO2 emissions using accelerated weathering of limestone. Energy, 32, 1471-1477.

Rau, G. H. (2011). CO2 Mitigation via Capture and Chemical Conversion in Seawater. Environmental Science & Technology, 45, 1088-1092. [Online]

Rayfuse, R., Lawrence, M. G., & Gjerde, K. M. (2008). Ocean Fertilisation and Climate Change: The Need to Regulate Emerging High Seas Uses. International Journal of Marine & Coastal Law, 23, 297-326.

Rees, A. P. (2005). FeeP-a dual release, dual ship experiment to investigate nutrient limitation of biological activity in the north-east Atlantic. Geophysical Research Abstracts, 7.

Ricke, K. et al. (2010). Regional climate response to solar-radiation management. Nature Geoscience, 3, 537-541.

Ricke, K. L. (2011). Effectiveness of stratospheric solar-radiation management as a function of climate sensitivity. Nature Climate Change, 92-96.

Rickels, W., Rehdanz, K., & Oschlies, A. (2010). Methods for greenhouse gas offset accounting: A case study of ocean iron fertilization. Ecological Economics, 69, 2495-2509.

Ridgwell, A. et al. (2009). Tackling Regional Climate Change by Leaf Albedo Bio-geoengineering. Current Biology, 19, 146-150.

Robock, A. et al. (2007). Southern hemisphere atmospheric circulation effects of the 1991 Mount Pinatubo eruption. Geophysical Research Letters, 34, L23710.

Robock, A. et al. (2010). A test for geoengineering? Science, 327, 530-531. [Online]

Robock, A., Oman, L., & Stenchikov, G. L. (2008). Regional climate responses to geoengineering with tropical and Arctic SO2 injections. Journal of Geophysical Research, 113, 1-15.

Robock, A., Marquardt, A., Kravitz, B., & Stenchikov, G. L. (2009). Benefits, risks, and costs of stratospheric geoengineering. Geophysical Research Letters, 36, 9. [Online]

Robock, A. et al. (2009). Did the Toba volcanic eruption of %7e74 ka B.P. produce widespread glaciation? Journal of Geophysical Research Atmospheres, 114, 1-9. [Online]

Roderick, M. L. & Farquhar, G. D. (2012). Geoengineering: Hazy, cool and well fed? Nature Climate, 2, 76-77. [Online]

Romero, F. G. (2007). Why Fertilize the Sulu Sea? Ocean Geographic, 3, 81.

Rose, J. M. et al. (2009). Synergistic effects of iron and temperature on Antarctic phytoplankton and microzooplankton assemblages. Biogeosciences, 6, 3131-3147. [Online]

Ross, A. & Matthews, H. D. (2009). Climate engineering and the risk of rapid climate change. Environmental Research Letters, 4,1-6. [Online]

Ryaboshapko, A. G. (2010). On the taboo on researching in the field of global climate geoengineering. Russian Meteorology & Hydrology, 35, 500-502. [Online]


Salter, S., Sortino, G., & Latham, J. (2008). Sea-going hardware for the cloud albedo method of reversing global warming. Philosophical Transactions of the Royal Society A, 366, 3989-4006. [Online]

Sarmiento, J. & Orr, J. (1991). Three dimensional simulations of the impact of Southern Ocean nutrient depletion on atmospheric CO2 and ocean chemistry. Limnology & Oceanography, 36, 1928-1950.

Scharek, R., van Leeuwe, M. A., & De Baar, H. J. W. (1997). Responses of Southern Ocean phytoplankton to the addition of trace metals. Deep Sea Research Part II: Topical Studies in Oceanography, 44, 209-227.

Schlacke, S. & Kenzler, J. (2009). Klimaschutz durch Meeresdüngung? Zum (Spannungs-) Verhältnis zwischen Seevölkerrecht and Biodiversitätskonvention. Natur und Recht, 31, 753.

Schmidt, H. et al. (2012). Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four earth system models. Earth System Dynamics, 3, 63-78. [Online]

Schuiling, R. D. & Krijgsman, P. (2006). Enhanced Weathering: An effective and cheap tool to sequester CO2Climatic Change, 74, 349-354. [Online]

Seifritz, W. (1989). Mirrors to halt global warming. Nature, 340, 603. [Online]

Seitz, R. (2011). Bright water: hydrosols, water conservation and climate change. Climatic Change. [Online]

Shetty, R. P., Endy, D., & Knight, T. F. (2008). Engineering BioBrick Vectors from BioBrick Parts. Journal of Biological Engineering, 2, 5. [Online]

Singarayer, J. S. & Davies-Barnard, T. (2012). Regional climate change mitigation with crops: context and assessment. Philosophical Transactions of the Royal Society A, 370(1974), 4301-4316. [Online]

Smetacek, V. & Naqvi, S. W. A. (2008). The next generation of iron fertilization experiments in the Southern Ocean. Philosophical Transactions of the Royal Society A, 366, 3947-3967. [Online]

Smetacek, V. et al. (2012). Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature, 487, 313-319. [Online]

Smith, K. et al. (2007). Free-Drifting Icebergs: Hot Spots of Chemical and Biological Enrichment in the Weddell Sea. Science, 317, 478-482.

Socolow, R. et al. (2011). Direct Air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs. American Physical Society [Online].

Spector, N. A. & Dodge, B. F. (1946). Removal of carbon dioxide from atmospheric air. Trans American Institute of Chemical Engineering, 42, 827-848.

Stenchikov, G. L. et al. (1998). Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. Journal of Geophysical Research, Atmospheres, 103, 13837-13857.

Stevens, B. & Feingold, G. (2009). Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607-613.

Stevens, B. et al. (1998). Large-eddy simulations of strongly precipitating, shallow, stratocumulus-toped boundary layers. Journal of Atmospheric Science, 55, 3616-3638.

Stevens, B. et al. (2005). Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon.Weather Review, 133, 1443-1462.

Stier, P. et al. (2005). The aerosol-climate model ECHAM5-HAM. Journal of Atmospheric Chemistry, 5, 1125-1156.

Stolaroff, J.K. (2006). Capturing CO2 from Ambient Air: A Feasibility Assessment. Carnegie Mellon University. [Online]

Storelvmo, T., Kristjansson, J. E., Muri, H., Pfeffer, M., Barahona, D., Nenes, A. (2013). Cirrus cloud seeding has potential to cool climate. Geophysical Research Letters, doi: 10.1002/grl.50122. [Online]

Strong, A. et al. (2010). Ocean fertilization: time to move on. Nature, 461, 347-348.

Strong, A. (2009). Ocean Fertilization: Science, Policy, and Commerce. Oceanography, 22, 236-261. [Online]

Sunda, W. G. & Huntsman, S. A. (1997). Interrelated influence of iron, light, and cell size on growth of marine phytoplankton. Nature, 390, 389-392. [Online]


Takeda, S. & Tsuda, A. (2005). An in situ iron-enrichment experiment in the western subarctic Pacific (SEEDS): Introduction and summary. Progress in Oceanography, 64, 95-109.

Teller, E., Wood, L., & Hyde R. (1997). Global Warming and Ice Ages: I. Prospects for Physics Based Modulation of Global Change (Rep. No. UCRL-JC-128715). Lawrence Livermore National Laboratory.

Thomas, W. H. (1969). Phytoplankton nutrient enrichment experiments off Baja, California and in the eastern equatorial Pacific Ocean. Journal of the Fisheries Res.Board of Canada, 26, 1133-1145. [Online]

Tilmes, S., Müller R, & Salawatch, R. (2008). The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science, 320, 1201-1204. [Online]

Tilmes, S., Kinnison, D. E., Garcia, R. R., Salawitch, R., Canty, T., Lee-Taylor, J. et al. (2012). Impact of very short-lived halogens on stratospheric ozone abundance and UV radiation in a geo-engineered atmosphere. Atmospheric Chemistry and Physics 12(22), 10945–10955. [Online]

Timmermans, K. R. et al. (2001). Growth rates of large and small Southern Ocean diatoms in relation to availability of iron in natural seawater. Limnology & Oceanography, 46, 260-266. [Online]

Timmreck, C., Graf, H-F., Lorenz, S., Niemeier, U., Zanchettin, D., Matei, D., Jungclaus, J. H., Crowley, T. J. (2010). Aerosol size confines climate response to volcanic super-eruptions. Geophysical Research Letters, 37(24). [Online]

Tranter, D. J. & Newell, B. S. (1968). Enrichment experiments in the Indian Ocean. Deep-Sea Research, 10, 1-9.

Traufetter, G. (2009). Slowing Global Warming with Antarctic Iron. Der Spiegel Online International. [Online]

Trenberth, K. E. & Dai, A. (2007). Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophysical Research Letters, 34, L15702.

Trick, C. G. et al. (2010). Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. Proceedings of the National Academy of Sciences of the United States of America 107(13), 5887-5892. [Online]

Tsuda, A., et al. (2003). A mesoscale iron enrichment in the Western Subarctic Pacific induces a large centric diatom bloom. Science, 300, 958-961.

Tsuda, A. et al. (2007). Evidence for the grazing hypothesis: grazing reduces plankton response of the HMLC ecosystem to iron enrichment in the Western Subarctic Pacific (SEEDS II). Journal of Oceanography, 63, 983-994.

Tuck, A. F. et al. (2008). On geoengineering with sulfate aerosols in the tropical upper troposphere and lower stratosphere. Climatic Change, 90, 315-331.

Turner, S. M. et al. (1996). Increased dimethyl sulfide concentrations in sea water from in situ iron enrichment. Nature, 383, 513-517.

Twining, B. S. et al. (2004). Cellular iron contents of plankton during the Southern Ocean Iron Experiment (SOFeX). Deep Sea Research Part I, 51, 1827-1850.

Twomey, S. (1977). Influence of pollution on the short-wave albedo of clouds. Journal of Atmospheric Science, 34, 1149-1152.


van Zwieten, L. et al. (2010). Influence of biochars on flux of N2O and CO2 from Ferrosol. Australian Journal of Soil Research, 48, 555-568.

Vaughan, N. E. & Lenton, T. M. (2012). Interactions between reducing CO2 emissions, CO2 removal and solar radiation management. Philosophical Transactions of the Royal Society A, 370(1974), 4343-4364. [Online]

Vivian, C. (2010). Towards regulation of ocean fertilisation by the London Convention and London Protocol: the story so far. The Geoengineering Quarterly [Online].


Weaver, A. J., et al. (2012). Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophysical Research Letters39, L20709. [Online]

Wallace, D., et al. (2011). Ocean fertilization: A Scientific Summary for Policymakers Intergovernmental Oceanographic Commission. [Online]

Walter, S., et al. (2005). Nitrous oxide measurements during EIFEX, the European Iron Fertilization Experiment in the subpolar South Atlantic Ocean. Geophysical Research Letters, 32, 1-4. [Online]

Wang, H. & Feingold, G. (2009). Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part I: impact of drizzle on the formation and evolution of open cells. Journal of Atmospheric Science, 66, 3237-3256.

Wang, H. & Feingold, G. (2009). Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part II: the microphysics and dynamics of the boundary region between open and closed cells. Journal of Atmospheric Science, 66, 3257-3275.

Wang, H., Skamarock, W. C., & Feingold, G. (2009). Evaluation of scalar advection schemes in the advanced research WRF model using large-eddy simulations of aerosol-cloud interactions. Mon.Weather Review, 137, 2547-2558.

Wang, H., Rasch, P. J., & Feingold, G. (2011). Manipulating marine stratocumulus cloud amount and albedo: a process-modelling study of aerosol-cloud-precipitation interactions in response to injection of cloud condensation nuclei. Atmospheric Chemistry & Physics Discussion 11, 885-916. [Online]

Wang, H. et al. (2010). Modelling microphysical and meteorological controls on precipitation and cloud cellular structures in Southeast Pacific stratocumulus. Atmospheric Chemistry & Physics, 10, 6347-6362.

Wang, S. P., Wang, Q., & Feingold, G. (2003). Turbulence, condensation, and liquid water transport in numerically simulated nonprecipitating stratocumulus clouds.Journal of Atmospheric Science, 60, 262-278.

Watson, A. J. et al. (2000). Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2Nature, 407, 730-733.

Watson, A. J. et al. (2008). Designing the next generation of ocean iron fertilization experiments. Marine Ecology Progress Series, 364, 303-309.

Weber, I. et al. (2007). Iron profiles and speciation of the upper water column at the Bermuda Atlantic Time-series Study size: A Model-Based Sensitivity Study.Biogeosciences, 4, 689-706.

White, A. et al. (2010). An open ocean trial of controlled upwelling using wave pump technology. Journal of Atmospheric & Oceanic Technology, 27, 385-396.

Wigley, T. M. L. (2006). A combined mitigation/geoengineering approach to climate stabilization. Science, 314, 452-454. [Online]

Wild, M., Grieser, J., & Schar, C. (2008). Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophysical Research Letters, 35.

Williamson, P. & Turley, C. (2012). Ocean acidification in a geoengineering context. Philosophical Transactions of the Royal Society A, 370(1974), 4317-4342. [Online]

Williamson, P., Wallace, D. W.R, Law, C. S., Boyd, P. W., Collos, Y., Croot, P. et al. (2012): Ocean fertilization for geoengineering: a review of effectiveness, environmental impacts and emerging governance. Process Safety and Environmental Protection, 90(6), 475-488. [Online]

Wilson, J. C. et al. (1993). In situ observations of aerosol and chlorine monoxide after the 1991 eruption of Mount Pinatubo: effect of reactions on sulfate aerosol. Science, 261, 1140-1143.

Wingenter, O. et al. (2004). Changing concentrations of CO, CH4, C5H8, CH3Br, CH3I, and dimethyl sulfide during the Southern Ocean Iron Enrichment Experiments.Proceedings of the National Academy of Sciences of the United States of America, 101, 8537-8541. [Online]

Wood, R. (2006). Rate of loss of cloud droplets by coalescence in warm clouds. Journal of Geophysical Research, 111.

Wood, R., Kubar, T., & Hartmann D. L. (2009). Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part II: heuristic models of rain formation. Journal of Atmospheric Science, 66, 2973-2990.

Woodhouse, M. T. et al. (2008). New directions: the impact of oceanic iron fertilisation on cloud condensation nuclei. Atmospheric Environment, 42, 5728-5730.

Woodward, I., et al. (2010). Biological Approaches to Global Environment Change Mitigation and Remediation. Current Biology, 19, R615-R623.


Yool, A. et al. (2009). Low efficiency of nutrient translocation for enhancing oceanic uptake of carbon dioxide. Journal of Geophysical Research, 114.


Zeebe, R. E. & Archer, D. (2005). Feasibility of ocean fertilization and its impact on future atmospheric CO2 levels. Geophysical Research Letters, 32.

Zeman, F. (2008). Experimental results for capturing CO2 from the atmosphere. AICHE J, 54, 1396-1399.

Zeman, F. S. & Lackner, K. S. (2004). Capturing carbon dioxide directly from the atmosphere. World Resource Review, 16, 157-172.

Zeman, F. S. & Keith, D. (2008). Carbon Neutral Hydrocarbons. Philosophical Transactions of the Royal Society A, 366, 3901-3918. [Online

Zeman, F. (2007). Energy and Material Balance of CO2 Capture from Ambient Air. Environmental Science & Technology, 41, 7558-7563.

Zettler, E. R. et al. (1996). Iron-enrichment bottle experiments in the equatorial Pacific: responses of individual phytoplankton cells. Deep Sea Research II, 43, 1107-1029.

Zhou, S. & Flynn, P. C. (2005). Geoengineering Downwelling Ocean Currents: A Cost Assessment. Climatic Change, 71, 203-220. [Online]

-top of page-

Meridians image is in the public domain. Kenyan woman image by Oxfam. Globe image by Lawrence Livermore National Laboratory. Etosha Salt Pan image by  SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE.