Individual variation in growth trajectories: phenotypic and genetic correlations in ontogeny of the house finch (Carpodacus mexicanus)

A. V. BADYAEV* & T. E. MARTIN†

*Division of Biological Sciences, The University of Montana, Missoula, MT 59812–4824, USA
†US National Biological Service, Montana Cooperative Wildlife Research Unit, MT 59812, USA

Abstract

We studied patterns of growth in a recently established natural population of the house finch (Carpodacus mexicanus) to examine whether phenotypic and genetic covariation among age-specific trait values is likely to constrain morphological change favoured by selection acting on adults. We found variable patterns of allometric relationships during ontogeny, and documented relatively weak covariations among ages or among traits in individual growth trajectories. Frequent compensatory growth largely cancelled out the initial differences among nestlings, potentially enabling house finches to raise offspring under diverse and unpredictable environmental conditions. Moderate levels of additive genetic variance in morphological traits throughout ontogeny, and relatively low and fluctuating phenotypic and genetic covariation among ages imply strong potential for evolutionary change in morphological traits under selection. This conclusion is consistent with the profound population-level divergence in morphological patterns that accompanied very successful colonization of most of North America by the house finch over the last 50 years.

Keywords:
developmental constraints; genetic covariance; growth trajectories; house finch; phenotypic covariation.

Introduction

For evolution to occur, a population must have phenotypic and heritable variation. Individual differences in developmental processes produce the within-population morphological variation on which selection can act (Gould, 1977; Alberch et al., 1979; Alberch, 1982), while the potential of a population to respond to selection is limited by the extent to which ontogenetic variation is heritable (e.g. Atchley & Rutledge, 1980; Atchley, 1987; Cowley & Atchley, 1992). Thus, knowledge of phenotypic and genetic aspects of ontogenetic variation is essential for understanding the potential for evolutionary change in a population (Price & Grant, 1985; Kirkpatrick & Lofsvold, 1992; Grant & Grant, 1995; Björklund, 1996a; Larsson et al., 1998).

Developmental systems are often under strong stabilizing selection to maintain homeostasis (e.g. Cheverud et al., 1983). Patterns of developmental and functional integration produced by this stabilizing selection strongly influence direction in which a population evolves, and often opposes selection pressures acting on adults (Cheverud, 1984; Lande, 1985). However, patterns of developmental variation and covariation often change during ontogeny (e.g. Zelditch & Carmichael, 1989; Cowley & Atchley, 1992). The observation that growth is often optimized with the local environmental conditions (reviewed in Gebhardt-Henrich & Richner, 1998) and the results of successful artificial selection on growth chronology and rate (e.g. Kinney, 1969; Atchley et al., 1997) suggest that growth trajectories themselves can evolve.

Empirical evidence from many species points to conservatism of developmental systems that often manifests itself in similarities between patterns of trait covariation within a particular ontogenetic stage (i.e. static allometry), and trait covariation across all ontogenetic stages (i.e. ontogenetic allometry) (e.g.

Keywords:
developmental constraints; genetic covariance; growth trajectories; house finch; phenotypic covariation.

Abstract

We studied patterns of growth in a recently established natural population of the house finch (Carpodacus mexicanus) to examine whether phenotypic and genetic covariation among age-specific trait values is likely to constrain morphological change favoured by selection acting on adults. We found variable patterns of allometric relationships during ontogeny, and documented relatively weak covariations among ages or among traits in individual growth trajectories. Frequent compensatory growth largely cancelled out the initial differences among nestlings, potentially enabling house finches to raise offspring under diverse and unpredictable environmental conditions. Moderate levels of additive genetic variance in morphological traits throughout ontogeny, and relatively low and fluctuating phenotypic and genetic covariation among ages imply strong potential for evolutionary change in morphological traits under selection. This conclusion is consistent with the profound population-level divergence in morphological patterns that accompanied very successful colonization of most of North America by the house finch over the last 50 years.

Keywords:
developmental constraints; genetic covariance; growth trajectories; house finch; phenotypic covariation.

Abstract

We studied patterns of growth in a recently established natural population of the house finch (Carpodacus mexicanus) to examine whether phenotypic and genetic covariation among age-specific trait values is likely to constrain morphological change favoured by selection acting on adults. We found variable patterns of allometric relationships during ontogeny, and documented relatively weak covariations among ages or among traits in individual growth trajectories. Frequent compensatory growth largely cancelled out the initial differences among nestlings, potentially enabling house finches to raise offspring under diverse and unpredictable environmental conditions. Moderate levels of additive genetic variance in morphological traits throughout ontogeny, and relatively low and fluctuating phenotypic and genetic covariation among ages imply strong potential for evolutionary change in morphological traits under selection. This conclusion is consistent with the profound population-level divergence in morphological patterns that accompanied very successful colonization of most of North America by the house finch over the last 50 years.

Keywords:
developmental constraints; genetic covariance; growth trajectories; house finch; phenotypic covariation.

Abstract

We studied patterns of growth in a recently established natural population of the house finch (Carpodacus mexicanus) to examine whether phenotypic and genetic covariation among age-specific trait values is likely to constrain morphological change favoured by selection acting on adults. We found variable patterns of allometric relationships during ontogeny, and documented relatively weak covariations among ages or among traits in individual growth trajectories. Frequent compensatory growth largely cancelled out the initial differences among nestlings, potentially enabling house finches to raise offspring under diverse and unpredictable environmental conditions. Moderate levels of additive genetic variance in morphological traits throughout ontogeny, and relatively low and fluctuating phenotypic and genetic covariation among ages imply strong potential for evolutionary change in morphological traits under selection. This conclusion is consistent with the profound population-level divergence in morphological patterns that accompanied very successful colonization of most of North America by the house finch over the last 50 years.

Keywords:
developmental constraints; genetic covariance; growth trajectories; house finch; phenotypic covariation.
Cheverud, 1982; Creighton & Strauss, 1986; Wayne, 1986; Voss et al., 1990; Björklund, 1994; Fiorello & German, 1997). Such conservatism in ontogenies is often produced by close covariation among ages (e.g. Hazel et al., 1943; Eisen, 1976; Cheverud et al., 1983; Leamy & Cheverud, 1984). High genetic and phenotypic correlations and autocorrelations throughout ontogeny could strongly reduce independent variation of traits at different ages, limit the number of dimensions in growth trajectories, and thus present a powerful constraint on the evolution of ontogeny (McCarthy & Bakker, 1979; Kirkpatrick & Lofsvold, 1992; Klingenberg, 1996; Björklund, 1997).

Here we examine the patterns of phenotypic and genetic variation in growth of the house finch (Carpodacus mexicanus). We specifically examine whether available ontogenetic variation is likely to limit, or bias, the morphological changes favoured by strong current selection on adult finches in Montana (Badyaev & Martin, 2000). We address three questions. First, do growth trajectories vary among individuals within a population? Second, how constrained is the phenotypic and genetic variation across ages, and how likely is it to limit morphological change in adults? Third, is there heritable genetic variation in the ontogeny of morphological traits, and do heritability estimates vary during ontogeny?

Finally, we discuss the potential ecological and evolutionary consequences of ontogenetic patterns found in the house finches.

Methods

Data collection

We studied a large, resident population of house finches that occupy an isolated area of suitable nesting habitat in western Montana (USA). The data were collected during March–July 1995–1999. The study site is located in an open field, and contained several hundred 2-m-high ornamental bushes used by finches for nesting, and several large coniferous trees used by finches for roosting. All resident finches were trapped during January–March and August–October, measured, and marked with a unique combination of one aluminium and three coloured plastic rings. All pairing and nesting affiliations of breeding adults were reliably determined (see Badyaev & Martin, 2000, for detailed description of field techniques). The hatching was continuously monitored and nestlings were individually marked within a few hours of hatching. Longitudinal growth data were collected on day 2 after hatching (hereafter age 2), 4, 6, 8, 10, 12, 14 and 16 (fledging day). After fledging, individually marked juveniles were repeatedly recaptured, and their age was categorized as follows: 25–40 days after hatching – age 33, 45–55 days – age 50, 60–70 days – age 65, 71–75 days – age 73, 80–85 days – age 83, and 87–144 days – age 117. In April 1995 and 1996 some 2–6-day-old nestlings were not measured, and thus sample sizes vary. Sample sizes were as follows: 88 nestlings from 29 nests were measured every 2 days for the entire nesting period (age 2 to age 16) and at age 33. Age-specific sample sizes: age 2, 89 nestlings (29 families); age 4 and age 6, 91 (29); age 8, 121 (41); age 10, 132 (50); age 12, 158 (61); age 14, 122 (51); age 16, 124 (52); age 33, 101 (47); age 50, 34 (16) males and 28 (16) females; age 65, 20 (17) males and 25 (19) females; age 73, 24 males and 22 females; age 83, 27 males and 29 females; age 117, 29 males and 23 females; and known-age sample of at least 2-year-old (adult) birds randomly selected for this study, 38 males and 36 females.

We measured (with digital calipers to an accuracy of 0.05 mm): bill length from angle of the skull to the tip of the upper mandible; bill width at the anterior end of the rostrils; bill depth in a vertical plane at the anterior end of the nostrils over both mandibles; tarsus length (left and right); wing (left and right, flattened), and body mass (with Pesola balance, to an accuracy of 0.05 g). All morphological measures were repeated twice (i.e. four times for the bilateral traits), and the average of repeated measures was used for further analyses. Repeatabilities for all traits are presented in Badyaev & Martin (2000). Briefly, in nestlings, error variance did not exceed 12% of the total variance and was the largest for bill width and depth (6–12%) and smallest for body mass, wing and tarsus (3–4%). All linear data were ln-transformed, body mass was cube-root transformed, and all data were zero-mean standardized before the analyses.

Data analysis

Static and ontogenetic allometries

We calculated bivariate allometry coefficients and compared them with the isometric vector coefficients. Bivariate allometry coefficient of a trait with size at a particular age is the standardized loading of that trait on the first principal component. The isometric vector has the standardized loadings (1/p)½ where p is a number of traits. With six traits in this study (1/p)½ was 0.408, so that the ratio of each trait’s loading with 0.408 is the bivariate allometry coefficient of that trait with overall body size. Calculated for each age separately, these allometric relationships represent static allometric coefficients (Table 1). Because of significant deviations of age-specific vectors from isometry (e.g. Table 3), we also estimated bivariate coefficients of traits in relation to each other (Shea, 1985). Similarity of age-specific and isometric vectors was illustrated with vector correlations and corresponding angles. To estimate the significance of the angle between two vectors, we calculated the range of angles for the 10 000 pairs of random six-element vectors with randomly substituted elements (Cheverud, 1982; Klingenberg & Zimmerman, 1992).

To estimate variability in phenotypic ontogenetic vectors over the entire growth sequence, we performed
MANOVA of individuals and ages. Ontogenetic allometry coefficients (see below) can be estimated from the principal component analysis as the PC1 of the among-age matrix of the sum of squares and cross-products (SSCP matrix) (after Klingenberg, 1996). In this case, PC1 of the matrix is a vector of ontogenetic allometry. Standard errors for the PC1 were estimated from 2640 random resamplings with replacement of individual nestling values. In most studies, ontogenetic allometry coefficients are estimated as PC1 of the conventional principal component analysis on data pooled across all individuals and all ages (e.g. Cock, 1966; Gould, 1977; Shea, 1985). However, the use of the SSCP matrix allowed us to take full advantage of our longitudinal data set.

Individual variation in growth trajectories
First, for each trait we calculated phenotypic and genetic correlations among all age-specific trait values (see below) to construct phenotypic and genetic variation matrices for the growth sequence through ages 2 and 33. Second, to examine patterns of variation and covariation across growth sequence, we calculated longitudinal Common Principal Component (CPC) coefficients, eigenvalues and individual scores. CPC analysis was used because phenotypic and genetic patterns of covariation among morphological traits are partially similar across ontogenetic stages (e.g. Cock, 1966; Gould, 1977). The longitudinal CPC model assumes that the different ages share the same principal components, thus it is especially appropriate for studies such as ours (Klingenberg & Zimmermann, 1992; Klingenberg et al., 1996; Klingenberg, 1996). In addition, the longitudinal CPC model assumes that different components are uncorrelated not only within but also across ages (e.g. Klingenberg et al., 1996). Unlike the original measurements, in which separate analyses of covariation among ages for each age ignore the correlations among traits, each CPC can be analysed without any loss of information on correlation among traits (reviewed in Klingenberg et al., 1996; see also Flury, 1988; Klingenberg & Zimmermann, 1992). Third, to examine individual variability in ontogenetic trajectories, we calculated conventional principal component (PCA) coefficients from a covariance matrix of CP1 scores for each age (after Klingenberg, 1996). High covariation among ages would produce a highly integrated ontogeny where variation in one age would affect all subsequent groups. This ontogenetic pattern would produce consistently increasing or decreasing principal component (PC) loadings for each age (Björklund, 1993; Klingenberg, 1996; see also Kirkpatrick & Lofsvold, 1992). Highly variable and distinct PC1 loadings among ages, and especially loadings of the opposite signs indicate negative covariation among some ages. Such ontogenetic patterns are considered ‘relatively unconstrained’ and could be produced by compensatory growth of traits at different ages (Cheverud et al., 1983; Riska et al., 1984; Klingenberg, 1996; Björklund, 1997). We tested the uniqueness of individual eigenvalues with the SAS/IML program provided in Klingenberg (1995); we evaluated the CPC model for each age period with Flury’s (1988) decomposition of chi-squared tests conducted with algorithms provided in Phillips (1997).

Genetic analysis
Genetic correlations among age-specific values for each of the six traits were calculated from the full-sib design (Falconer & Mackay, 1996, p. 312). Genetic relatedness among nestlings within each nest and between social parents and offspring (see below) was confirmed with the DNA fingerprinting analysis (A. V. Badyaev & P. O. Dunn, unpublished data). Although sex of all nestlings was determined by PCR amplification of the avian CHD gene (A. V. Badyaev & L. A Whittingham, unpublished data), sexes of offspring were pooled for these analyses because our sample size (88 nestlings from 29 families) was not sufficient to detect differences between sex-specific genetic correlations. Our sample was also too small to calculate standard errors for genetic correlation estimates.

The midparent–midoffspring regression for a trait can be used to estimate the genetic covariation between parents and offspring for a trait (Falconer & Mackay, 1996). We estimated the regression coefficients for ages 2–50, and standard errors for each age were generated by resampling with replacement of values for each family. Measurements of a character at different times, such as parental wing length and still-growing wing of offspring at day 5, are not identical traits, and thus cannot be used to estimate heritabilities (except at age 50 when most growth is completed). However, in this study we were interested in ontogenetic changes in parent–offspring genetic covariances that can be estimated by the midparent–midoffspring regressions. Moderate assortative mating for the measured traits in our population (r) can inflate midparent variance, and thus the variance for each trait was adjusted by (1 + r) (Falconer & Mackay, 1996, p. 179). Male and female phenotypic variances for the measured traits were equal (Badyaev & Martin, 2000; Badyaev & Hill, in review), and therefore are unlikely to bias our estimates of genetic covariances.

Results
Nestling growth and static allometry
Variation in static allometric relationships illustrates the differences among traits in an onset and intensity of growth (Tables 1 and 2, Fig. 1). The most pronounced contrast in growth was between bill traits (bill length, depth, width) and body traits (wing, tarsus, body mass). Overall, relative increase in body traits was most prominent early in ontogeny (i.e. before fledging, Fig. 1, Table 1), while relative increase in bill traits was most pronounced late in ontogeny (after fledging, Fig. 1, Table 2). At age 2 most traits had a negative allometric
relationship (i.e. relationship less than one) to tarsus length and bill depth (e.g. wing/tarsus \( \approx 0.395/0.450 \approx 0.878 \); bill length/bill depth \( \approx 0.397/0.442 \approx 0.898 \)). Growth pattern from age 4 to age 12 was dominated by negative allometries of traits in relation to wing and body mass. These patterns changed drastically near (ages 14 and 16) and after fledging when most traits had negative allometries in relation to bill traits, especially bill length and width (Tables 1 and 2). In addition to these general patterns, at age 4, bill length, bill depth, and wing were larger relative to other traits. At age 12, relative increase in tarsi and wing were the most prominent in relation to other traits.

The first eigenvector showed considerable departures from isometry throughout ontogeny; the angle between the first eigenvector and the isometric vector ranged from 4.4° at age 2 to 29.8° at age 10 (Table 3). Angles between vectors for all ages were smaller than angles of any of the randomly generated pairs of vectors. The most significant deviations from isometry (e.g. 35.8° at age 73) occurred after fledging; these deviations were most likely associated with accelerated growth of sexually dimorphic traits in males.

**Ontogenetic allometry and individual variation in growth trajectories**

Analyses of ontogenetic allometry revealed variable phenotypic patterns of development (Fig. 2). The first eigenvalue of the SSCP among-age phenotypic matrix accounted for 59.4% of the total variance, and the first two eigenvalues accounted for 71.1% of the total variance. Static and ontogenetic allometries were distinct (Fig. 2), possibly reflecting the contrast between early and late maturing traits (i.e. body vs. bill traits, Tables 1 and 2, Fig. 1).

Phenotypic and genetic correlations (calculated from the full-sib analyses, see Methods) across age groups (not shown) were generally low and often near zero or slightly negative. Age-specific covariance matrices, both phenotypic and genetic, were mostly distinct, even between consecutive ages (e.g. phenotypic matrices for ages 6 and 8, ages 8 and 10, and ages 16 and 33 shared no common principal components (CPCs), \( \chi^2 = 62.7, \) d.f. = 5, \( P < 0.001; \chi^2 = 22.5, \) d.f. = 5, \( P < 0.001; \) and \( \chi^2 = 20.4, \) d.f. = 5, \( P = 0.001, \) respectively). The most similar were ages 10 and 12, where matrices shared three of four CPCs: \( \chi^2 = 18.7, \) d.f. = 12, \( P = 0.05; \) and ages 12 and 14, where matrices shared two CPCs: \( \chi^2 = 23.1, \) d.f. = 9, \( P = 0.006. \)

Relatively low phenotypic and genetic covariation across ages, and high individual variation in covariance patterns were evident in the patterns of age-specific variability, where the largest eigenvalue of the PCA on CPC1 scores accounted for only 45.4% of the total variation in phenotypic matrix (44.8% in genetic correlation matrix), and the first three eigenvalues accounted for 92.0% and 87.8% of the total variation, respectively.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Age 2</th>
<th>Age 4</th>
<th>Age 6</th>
<th>Age 8</th>
<th>Age 10</th>
<th>Age 12</th>
<th>Age 14</th>
<th>Age 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill length</td>
<td>0.397</td>
<td>0.534</td>
<td>0.324</td>
<td>0.473</td>
<td>0.121</td>
<td>0.241</td>
<td>0.615</td>
<td>0.531</td>
</tr>
<tr>
<td>Bill depth</td>
<td>0.442</td>
<td>0.533</td>
<td>0.403</td>
<td>0.101</td>
<td>0.135</td>
<td>0.165</td>
<td>0.497</td>
<td>0.352</td>
</tr>
<tr>
<td>Bill width</td>
<td>0.397</td>
<td>0.127</td>
<td>0.399</td>
<td>0.173</td>
<td>0.295</td>
<td>0.231</td>
<td>0.431</td>
<td>0.416</td>
</tr>
<tr>
<td>Wing</td>
<td>0.395</td>
<td>0.589</td>
<td>0.494</td>
<td>0.734</td>
<td>0.654</td>
<td>0.601</td>
<td>0.424</td>
<td>0.521</td>
</tr>
<tr>
<td>Tarsus</td>
<td>0.450</td>
<td>0.329</td>
<td>0.426</td>
<td>0.350</td>
<td>0.370</td>
<td>0.531</td>
<td>0.350</td>
<td>0.451</td>
</tr>
<tr>
<td>Body mass</td>
<td>0.364</td>
<td>0.012</td>
<td>0.444</td>
<td>0.602</td>
<td>0.605</td>
<td>0.495</td>
<td>0.325</td>
<td>0.391</td>
</tr>
<tr>
<td>% var</td>
<td>83.18</td>
<td>58.35</td>
<td>81.32</td>
<td>58.71</td>
<td>43.87</td>
<td>52.71</td>
<td>49.71</td>
<td>44.65</td>
</tr>
</tbody>
</table>

**Ontogenetic allometry and integration of morphological traits during early ontogeny of the house finch.**

<table>
<thead>
<tr>
<th>Trait</th>
<th>Age 33</th>
<th>Age 50</th>
<th>Age 65</th>
<th>Age 73</th>
<th>Age 83</th>
<th>Age 117</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill length</td>
<td>0.618</td>
<td>0.621</td>
<td>0.386</td>
<td>0.631</td>
<td>0.521</td>
<td>0.571</td>
<td>0.448</td>
</tr>
<tr>
<td>Bill depth</td>
<td>0.475</td>
<td>0.363</td>
<td>0.341</td>
<td>0.478</td>
<td>0.592</td>
<td>0.341</td>
<td>0.367</td>
</tr>
<tr>
<td>Bill width</td>
<td>0.481</td>
<td>0.442</td>
<td>0.682</td>
<td>0.641</td>
<td>0.454</td>
<td>0.350</td>
<td>0.458</td>
</tr>
<tr>
<td>Wing</td>
<td>0.201</td>
<td>0.301</td>
<td>0.321</td>
<td>0.087</td>
<td>0.109</td>
<td>0.112</td>
<td>0.316</td>
</tr>
<tr>
<td>Tarsus</td>
<td>0.110</td>
<td>0.130</td>
<td>0.159</td>
<td>0.091</td>
<td>0.063</td>
<td>0.021</td>
<td>0.252</td>
</tr>
<tr>
<td>Body mass</td>
<td>0.417</td>
<td>0.355</td>
<td>0.121</td>
<td>0.127</td>
<td>0.239</td>
<td>0.370</td>
<td>0.540</td>
</tr>
<tr>
<td>% var</td>
<td>53.17</td>
<td>49.12</td>
<td>35.65</td>
<td>33.50</td>
<td>41.20</td>
<td>37.40</td>
<td>40.10</td>
</tr>
</tbody>
</table>

*Effects of sex are removed in ANCOVA for ages 50 and older.
Fig. 1 Growth curves (mean ± SE) illustrating the relationship between age (days) and the proportion of adult size (size of adult female) for bill traits and body traits in the house finch.
None of the PCs accounted for most of the variation during all ages (Fig. 3). Instead, PC1 of the phenotypic matrix primarily explained variability during early ages in contrast to ages 4, 14 and 33, PC2 accounted for variability in ages 4, and 8–33 in contrast to ages 2 and 6, and PC3 mostly explained variation during the first 4 days of the nestling period (Fig. 3). In genetic correlation matrix, PC1 contrasted variation at ages 2, 8 and 14 with ages 4, 6, 12, 16 and 33. No single component accounted for variability in all ages simultaneously (Fig. 3). While a large portion of variation in growth was still associated with one growth trajectory (PC1, Fig. 3II), suggesting some constraints during growth, there were at least three distinct directions (eigenfunctions) for which considerable phenotypic variation is present.

The negative covariance observed between consecutive stages points to occurrence of compensatory growth, especially between ages 2 and 4, and 16 and 33. Such compensatory growth is likely to balance the differences that were present among nestlings in the earlier ages (Fig. 4), and closely corresponds to the periods of maximum growth gains (Fig. 1). A decrease in both total phenotypic variance of standardized untransformed traits with age (Fig. 4) and in sample variances for principal components (expressed as eigenvalues, Tables 1 and 2) strongly suggests that compensatory growth is widespread in ontogeny of the house finch.

### Ontogenetic variation in genetic covariance between adult and juvenile traits

Patterns of genetic covariation between midparent and midoffspring were similar among traits (Fig. 5). The genetic covariances generally increased with age, and most reached significance by age 12 (Fig. 5). All covariances were significantly different from zero after age 14, and by age 50, when most growth is completed (Fig. 1), midparent vs. midoffspring regression can be used to estimate heritabilities for each trait. Estimates of heritabilities at age 50 were high and varied from 0.35 to 0.49 for bill traits, and from 0.22 to 0.41 for body traits.

### Discussion

Evolutionary change in morphology requires heritable ontogenetic variation. Thus, understanding phenotypic and genetic parameters of growth trajectories and their variation among individuals in a population is important for predicting evolutionary change. Several problems need to be investigated. First, examination of an association between morphological patterns of adults and...
Fig. 3 Patterns of individual phenotypic (A) and genetic (B) variation and covariation in growth trajectories across ages of the house finches. (I) Percentage of total variance explained by principal-component (PC) eigenvalues from covariance matrix of individual scores of the first common component (CPC) in all ages. Coefficients of the (II) PC1, (III) PC2 and (IV) PC3 for each age group. Error bars are the bootstrapped standard errors, and are only estimated for the phenotypic correlations.
morphological patterns prevailing during growth can reveal how closely adult static allometries correlate with ontogenetic allometries. Similarities between these allometries would imply that adult morphological patterns could be reliably predicted from morphological patterns during developments (e.g. Voss et al., 1990; Klingenberg & Zimmermann, 1992; Björklund, 1996b). Second, analyses of phenotypic and genetic covariation among traits at different ages can indicate potential for evolutionary change in ontogenies (Cheverud, 1984; Lande, 1985; Cowley & Atchley, 1992). Specifically, close covariation among ages implies that selection on a trait at one age would result in changes in this trait in consecutive ages (e.g. Riska et al., 1984; Kirkpatrick & Lofsvold, 1992). In addition, if close covariation among ages is accompanied by close integration among traits at each age, the overall short-term change in morphology will be limited to a few directions only, irrespective of directions favoured by current selection (Cheverud et al., 1983; Cheverud, 1984; Wagner, 1988; Kirkpatrick & Lofsvold, 1992). Third, the amount of additive genetic variance at each age, and differences among ages in the amount of genetic variance could strongly affect the evolutionary change (e.g. Atchley, 1987; van Noordwijk & Marks, 1998).

Static allometric relationships varied during development mostly due to differences in the onset of growth and growth rates between bill and body traits (Tables 1 and 2). Growth in body size traits (i.e. tarsus, wing and body mass) started earlier and continued at higher rates compared with later maturing bill traits (bill length, width and depth) (Tables 1 and 2, Figs 1 and 2). Heterochrony in body and bill traits apparently is common in Cardueline and Emberizidae finches (Grant, 1981; Boag, 1984; Björklund, 1994), and may be related to the resources preferentially allocated to the traits with immediate functional importance at a certain age (e.g. O’Connor, 1977; reviewed in Starck, 1998). For example, fast growth in body mass may be a priority for thermo-regulatory reasons (Cane, 1993), while rapid growth of tarsi may be adaptive for intrabrood competition (Monk, 1998), or for early leaving of the nest in areas with high nest predation (e.g. Ricklefs, 1968; Björklund, 1994).

The contrast between early and late maturing traits was illustrated in differences between ontogenetic and static allometries of nestlings (Fig. 2; see also Boag, 1984; Björklund, 1994). Close concordance between static and ontogenetic allometries would imply that most of the morphological variation among individuals results from variable growth along relatively constant allometric trajectories (e.g. Cock, 1966; Leamy & Bradley, 1982). Because it is clearly not the case in our study population (Tables 1–3), static allometry of adult finches does not immediately follow from ontogenetic allometric variation.

Principal component analysis of CPC scores for each age provides an estimate of individual variation in phenotypic and genetic patterns in ontogenies (Klingenberg et al., 1996). If most of the total variation is limited to the first principal component (i.e. approximation of size at each age), this would imply a constraint on changes in directions other than an increase or decrease in overall size (Klingenberg, 1996; see also Kirkpatrick & Lofsvold, 1992; Björklund, 1993, 1996a, 1997; Schluter, 1996). We found that in both genetic and phenotypic matrices, the first eigenfunction illustrated variation in only some ages, and accounted for only a moderate amount of the total ontogenetic variation (Fig. 3). Large amounts of variation accounted for by the first three eigenvalues implies significant potential for evolutionary change in these three directions. This pattern also points to significant constraints in ontogeny of the house finch –
no variation was present in about half of all possible eigenvalues (Fig. 3). Thus, our results suggest that as long as selection favours morphological change in directions described by these three eigenvalues, phenotypic and genetic constraints during ontogeny are unlikely to strongly limit evolutionary change.

Several recent studies documented that close covariation among age-specific trait values, and low individual variation for growth trajectories lead to the general lack of genetic and phenotypic variation for ontogenetic change other than change in overall size (e.g. Kirkpatrick & Lofsvold, 1992, and references therein; Klingenberg, 1996). For example, Björklund (1993) used the infinite-dimensions method (Kirkpatrick & Lofsvold, 1992) to analyse the phenotypic variation in ontogeny of three Cardueline finches, including a close relative of the house finch.

\[ \text{Fig. 5} \text{ Ontogenetic variation in genetic covariance between midparent and midoffspring traits for each age in the house finch. Values at age 50 estimate heritability of a trait.} \]
Compensatory growth is adaptive if it enables individuals to achieve the same adult size under diverse environmental conditions (Riska et al., 1984; Cooch et al., 1991; Smith & Wettermark, 1995; Larsson et al., 1998). For example, accelerated compensatory growth is often associated with intensive feeding after periods of malnutrition (reviewed in Gebhardt-Henrich & Richner, 1998). The house finches in the recently established Montana population (Badyaev & Martin, 2000). For all traits, except body mass, genetic associations between adults and juveniles were generally high at late ages (Fig. 5). Body mass had relatively low heritability, but also low repeatability in adults (Badyaev & Martin, 2000). Because the amount of evolutionary change is determined by the amount of additive genetic variance at each age where selection acts, moderate genetic covariations indicate that evolutionary response to selection is likely to be fast in the house finch. Strong response to selection is further favoured by relatively low covariation among ages and traits, thus providing both opportunities for morphological change in several directions and opportunities for selection to act on individual traits. Furthermore, traits examined in this study are the targets of current selection on adult finches in the Montana population (Badyaev & Martin, 2000).

This study suggests that the considerable amount of variation in individual ontogenetic trajectories, comparatively low genetic and phenotypic covariations among age-specific trait values, and significant genetic variance throughout most of the ontogeny may have accounted for close congruence between current net selection and current morphology in adult house finches in our study.
population (Badyaev & Martin, 2000). Evolutionary response to selection could also manifest itself in a strong adaptive divergence in morphological patterns among recently established house finch populations (Badyaev & Hill, in review). In addition, widespread occurrence of compensatory growth in the house finch ontogeny may have allowed development under a wide variety of environmental conditions, and ultimately contributed to the unusually high colonization abilities of this species.

Acknowledgments

A.V.B. is especially grateful to Trevor Price for stimulating discussion, detailed review of this study, and many helpful suggestions. We also thank Dolph Schluter, Douglas Emlen, Bill Eiges, John McKay, Cameron Ghalambor, Wendy Parson and two anonymous reviewers for thorough reviews of earlier versions of this manuscript. This paper benefited from discussions with J. Avise, K. Bright, G. Hill, J. Lloyd, B. Lyon and D. Promislow. We are grateful to W. Davison, K. Faughnan, T. Fondell, C. Ghalambor, B. Heidinger, P. Hendricks, P. Martin and A. Rapone for help in the field. Mr Robert McCue and the personnel of the Vigilante MiniStorage kindly allowed us to work on their property.

References


Received 29 July 1999; revised 21 September 1999; accepted 2 November 1999