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Abstract.—Hybridization may often be an important source of adaptive variation, but the extent and long-term impacts of
introgression have seldom been evaluated in the phylogenetic context of a radiation. Hares (Lepus) represent a widespread
mammalian radiation of 32 extant species characterized by striking ecological adaptations and recurrent admixture. To
understand the relevance of introgressive hybridization during the diversification of Lepus, we analyzed whole exome
sequences (61.7 Mb) from 15 species of hares (1–4 individuals per species), spanning the global distribution of the genus,
and two outgroups. We used a coalescent framework to infer species relationships and divergence times, despite extensive
genealogical discordance. We found high levels of allele sharing among species and show that this reflects extensive
incomplete lineage sorting and temporally layered hybridization. Our results revealed recurrent introgression at all stages
along the Lepus radiation, including recent gene flow between extant species since the last glacial maximum but also
pervasive ancient introgression occurring since near the origin of the hare lineages. We show that ancient hybridization
between northern hemisphere species has resulted in shared variation of potential adaptive relevance to highly seasonal
environments, including genes involved in circadian rhythm regulation, pigmentation, and thermoregulation. Our results
illustrate how the genetic legacy of ancestral hybridization may persist across a radiation, leaving a long-lasting signature
of shared genetic variation that may contribute to adaptation. [Adaptation; ancient introgression; hybridization; Lepus;
phylogenomics.]

Species radiations are often accompanied by extensive
gene flow between nascent lineages (e.g., Lamichhaney
et al. 2015; Árnason et al. 2018; Malinsky et al. 2018;
Li et al. 2019; Barth et al. 2020). Genetic signatures of
hybridization between several closely related species
could either represent recent or ongoing introgressive
hybridization (Eaton et al. 2015), or the remnants of
hybridization among ancestral populations that remain
shared among contemporary species (Malinsky et al.
2018; Li et al. 2019). Although these alternatives can be
difficult to differentiate in large radiations (Eaton et al.
2015; Malinsky et al. 2018; Vanderpool et al. 2020), both
ancient and contemporary introgression has been linked
to local adaptation in several systems (e.g., Liu et al. 2015;
Gittelman et al. 2016; Meier et al. 2017; Barlow et al. 2018;
Giska et al. 2019; Svardal et al. 2020). Thus, unraveling
the tempo and contribution of introgression to standing
genetic variation within and among species remains a
critical step in understanding the overall importance of
introgression to evolution.

Reconstructing the history of hybridization between
several closely related species requires inferring
evolutionary relationships among species while
considering the two primary processes—incomplete
lineage sorting and gene flow—that may cause sharing
of genetic variation among populations (Malinsky

et al. 2018). The network multispecies coalescent
(NMSC) model (Than et al. 2011; Solís-Lemus et al.
2017; Degnan 2018) offers one promising framework
that appears to resolve species relationships in the face
of multiple reticulation events and rapid speciation
(Kozak et al. 2018; Edelman et al. 2019). However, the
NMSC is still prohibitive for large data sets and relies
on the user to choose the number of migration events
based on a priori hypotheses (Yu and Nakhleh 2015).
Alternatively, site-based summary statistics based on
tree asymmetries (e.g., Green et al. 2010; Pease and Hahn
2015), or admixture proportions (e.g., Reich et al. 2009;
Martin et al. 2015; Malinsky et al. 2018) are simpler to
implement but offer less power for localizing the timing
and number of introgression events when recurrent
hybridization is layered across a phylogeny (Malinsky
et al. 2018). A combination of methods is thus most
appropriate to infer a species tree that may have layered
events of hybridization throughout time (e.g., Kozak
et al. 2018; Malinsky et al. 2018; Edelman et al. 2019; Li
et al. 2019).

Hares and jackrabbits comprise a group of 32 currently
classified species (genus Lepus; Smith et al. 2018)
whose common ancestor likely originated in North
America and spread throughout most of the Northern
Hemisphere and Africa presumably in the last 4–6
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millions of years (myr) (Yamada et al. 2002; Matthee
et al. 2004; Melo-Ferreira et al. 2012). Hares are primarily
associated with open grasslands, but can be found
across a broad range of biomes (e.g., desert, forest,
or arctic) and elevations (e.g., from sea level to the
Himalayan or Ethiopian plateau; Smith et al. 2018).
The Lepus radiation also provides multiple case studies
of hybridization and introgression, with admixture
detected among several extant pairs of species (e.g.,
Liu et al. 2011; Melo-Ferreira et al. 2012; Tolesa et al.
2017; Jones et al. 2018; Seixas et al. 2018; Lado et al.
2019; Kinoshita et al. 2019). Selection on introgressed
variation has been hypothesized to have aided the range
expansion of the Iberian hare (Seixas et al. 2018) and has
been directly linked to convergent adaptive evolution
of nonwhite winter coats in populations of two species
that change the color of their pelage seasonally (Jones
et al. 2018, 2020a; Giska et al. 2019). These studies
suggest that the relatively recent exchange of genetic
variation among extant Lepus species has provided an
important source of adaptive variation. However, the
phylogenetic relationships among Lepus species remain
poorly resolved (Halanych et al. 1999; Matthee et al. 2004;
Melo-Ferreira et al. 2012; Melo-Ferreira and Alves 2018),
and the contribution of ancient gene flow to the Lepus
evolutionary history remains unknown.

Here, we use exome-wide data to infer the
evolutionary history of 15 Lepus species and show
that hybridization between lineages has likely occurred
since the origin of the radiation. The combination of
incomplete lineage sorting and these temporally layered
events of hybridization have resulted in extremely
high levels of shared genetic variation among extant
species, including species that currently occur on
different continents. We then use the case of ancient
admixture among northern latitude species that occupy
highly seasonal environments to investigate the gene
content and possible functional relevance of introgressed
genomic regions. Our work demonstrates that recurrent
introgression throughout evolutionary history has made
a substantial contribution to genetic variation within and
among species of this widespread mammalian radiation.

MATERIALS AND METHODS

Taxon Sampling and Exome Sequencing
We generated new genome-wide resequencing data

targeting 207,691 exonic and noncoding regions [totaling
61.7 Megabases (Mb)] from 14 hare species (30
individuals) and the outgroup pygmy rabbit (Brachylagus
idahoensis; 2 individuals). We combined these data
with published whole exomes from four snowshoe
hares [Lepus americanus; NCBI Sequence Read Archive
BioProject PRJNA420081 from Jones et al. (2018, 2020b)]
and extracted data from the reference genome of
the European rabbit (Oryctolagus cuniculus; OryCun2.0;
Carneiro et al. 2014) to use as a second outgroup.
Our total sample of 15 hare species (34 individuals,
1–4 individuals per species) and 2 outgroup species

(3 individuals) included species from all major
regions of the Lepus native distribution: Africa (3
species), Africa and Eurasia (1 species), Eurasia (6
species), and North America (5 species, see Fig. 1
and Supplementary Table S1 available on Dryad at
http://dx.doi.org/10.5061/dryad.bzkh18967).

Exome capture experiments were performed
following the procedures outlined in Jones et al. (2018)
and in the Supplementary Materials and Methods
available on Dryad. Briefly, we obtained samples
as tissue or extracted DNA including samples from
previous studies or through loans from collaborators
(Supplementary Table S1 available on Dryad).
Depending on the sample, genomic DNA was isolated
using a saline extraction method (Sambrook et al. 1989)
or DNeasy Blood & Tissue Kit (Qiagen) (Supplementary
Table S1 and Supplementary Materials and Methods
available on Dryad). We prepared Illumina sequencing
libraries for each sample following Meyer and Kircher
(2010) with minor modifications [see Supplementary
Material and Methods available on Dryad and Jones
et al. (2018)]. Sequencing libraries were then enriched
using NimbleGen SeqCap EZ v.4.3 protocol and a
custom capture design consisting of 213,164 probes
targeting ∼25 Mb of protein-coding exons, ∼28 Mb of
untranslated regions, and ∼9 Mb of intron/intergenic
regions (Jones et al. 2018). Hybridization reactions were
performed in two separate equimolar pools of indexed
libraries (31 and 29 libraries, Supplementary Table S1
available on Dryad), together with samples used for
other studies. The target enriched pools were each
sequenced across two lanes of an Illumina HiSeq1500
sequencer (125 base pairs (bp) paired-end reads) at
CIBIO-InBIO’s New-Gen sequencing platform, Portugal.

Read Processing and Genotyping
We trimmed adapters, low-quality bases, merged

overlapping reads, and removed PCR duplicates from
raw reads using the expHTS pipeline (v.0.Mar112016;
https://github.com/msettles/expHTS). We then
used pseudo-it (v1; Sarver et al. 2017) to generate
pseudoreference exomes for each species by iteratively
mapping (four iterations and allowing ambiguity
codes) cleaned single and paired-end reads from
one individual per species (Supplementary Table S1
available on Dryad) to the European rabbit reference
genome (OryCun2.0) (Carneiro et al. 2014). For snowshoe
hares and black-tailed jackrabbits (L. californicus), we
used pseudoreferences generated by Jones et al. (2018).
The genomes of hares and European rabbits are broadly
syntenic, despite two known large scale fusions/fissions
(Robinson et al. 2002), and sufficiently closely related
that iterative mapping to the rabbit reference is not
expected to bias genotyping (Sarver et al. 2017; Marques
et al. 2020).

We then mapped data from all individuals to
each species-specific pseudoreference using bwa-mem
(v.0.7.12-r1039; Li 2013) with default options. Mapped
reads were sorted with samtools (v1.4; Li et al. 2009),
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FIGURE 1. Hare (Lepus spp.) evolutionary history and biogeography. a) The distribution of the 15 hare species studied in this work obtained from
the IUCN database (http://www.iucnredlist.org); b) Coalescent species tree estimated with ASTRAL assigning individuals to species groups
(n > 1 except for the white-sided jackrabbit); c) Ancestral range reconstruction under the DIVALIKE+J model implemented in BioGeoBEARS
on the divergence time tree estimated with MCMCtree and calibrated with deep fossil calibration points. Pie charts represent the probability of
each potential range, and squares represent the current range of extant taxa. Node labels represent estimated divergence times in millions of
years. Confidence intervals, an alternative biogeographic reconstruction based on Lepus fossil calibrations and ancestral ranges for the shoulders
of the tree are provided in Supplementary Material available on Dryad.

assigned to read groups, filtered for duplicates (Picard
v1.140; http://broadinstitute.github.io/picard/), and
realigned for insertion–deletion length variation using
GATK (v3.4.46; Van der Auwera et al. 2013). We
calculated coverage statistics and capture efficiency
using CalculateHSMetrics from Picard. For each
individual, we called and filtered genotypes using

the bcftools (v1.4; Li 2011) mpileup, call, and filter
pipeline. We excluded indels and filtered single
nucleotide variant genotypes with low mapping (MQ
< 20) or phred-scaled quality (QUAL < 20), low
sequencing depth (DP < 6), excess sequencing depth
(> 3× individual coverage, see Supplementary Table S2
available on Dryad), sites less than 10 bases from an
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indel (–SnpGap 10), and low quality nonreference
homozygous or heterozygous genotypes (GQ � 20).
We used the filtered genotypes to construct consensus
exome fasta sequences in the OryCun2.0 coordinate
system.

Species Tree Inference
We used a concatenated alignment without missing

data to estimate a single bifurcating phylogeny
using a maximum likelihood (ML) search and rapid
bootstrapping run under the GTR+� model of sequence
evolution (autoMRE option) in RAxML (v8.2.10;
Stamatakis 2018). We then used two complementary
methods to infer multispecies-coalescent trees while
accounting for local variation in phylogenetic histories
along the genome. First, we extracted 50 kilobase
(kb) alignments from the exome capture targeted
regions plus 200 base pairs of flanking sequences using
msa_split (phast 1.4; http://compgen.cshl.edu/phast/)
and bedtools (1.9; Quinlan and Hall 2010), considering
a balance between the expected extent of linkage
disequilibrium in hares (10–20 kb; Jones et al. 2018)
and the retention of information for phylogenetic
analysis (alignment length > 1 kb). For each
window, we filtered positions with missing data
for > 30% of individuals using TriSeq (TriFusion 1.0.0;
http://odiogosilva.github.io/TriFusion/), excluded
windows smaller than 1 kb, and used RAxML to
estimate local maximum likelihood gene trees (GTR+�,
100 bootstraps). For each gene tree, we used the
corresponding bootstraps to calculate a tree certainty
score based on the sum of certainty scores for all
internodes of a tree (-L MRE option in RAxML; Salichos
and Rokas 2013; Salichos et al. 2014; Kobert et al. 2016).
The internode certainty score weighs the support of
the bipartition represented by a given internode in
the gene tree against the support of the second most
prevalent conflicting bipartition (Salichos et al. 2014)
present in the bootstrap trees. In our case, the maximum
theoretical value of the tree certainty score is 31, or k−3
with k equal to the number of taxa (Salichos et al. 2014).
Only trees with certainty score above 5 were used in
the species tree inference. We unrooted the gene trees
using R package ape (Paradis et al. 2004) and estimated a
consensus species tree using ASTRAL-III (5.6.3; Zhang
et al. 2018).

We also estimated coalescent species trees using
only variable sites with SVDquartets (Chifman and
Kubatko 2014) implemented in PAUP* (4a163; Swofford
2003). For the analyses based on variable sites, we
recovered single nucleotide variants (SNVs) distanced
10 kb along the genome (within targeted regions and
200 bp flanking regions) using snp-sites (v2.3.3; Page
et al. 2016), a custom script and bedtools intersect, and
excluded sites with missing information for > 30%
of the individuals using a custom script (available at
https://github.com/evochange). For both SVDquartets
and ASTRAL analyses, species trees were estimated

with and without assigning species identities and
using sites/intervals genome-wide or only from the
X chromosome. The European and/or pygmy rabbits
were included for all analyses requiring outgroups.
Additional details on the phylogenetic analyses are
provided in the Supplementary Materials and Methods
available on Dryad.

Bayesian Divergence Time Inference
We performed Bayesian inference of divergence

times in the inferred species tree using an approximate
maximum likelihood method and assuming an
autocorrelated relaxed molecular clock, implemented
in MCMCtree (PAML v.4.9; Yang 2007) and described in
dos Reis and Yang (2011, 2019). For one individual per
species (Supplementary Table S1 available on Dryad),
we extracted the coding sequence for all genes included
in our capture design (18,798 genes in the OryCun2.0
ENSEMBLE 94 database) with bedtools getfasta, after
selecting the longest transcript per gene using R package
biomaRt (v2.34.2; Durinck et al. 2005, 2009). We excluded
alignments with more than 20% missing data using
AMAS (Borowiec 2016) (see Supplementary Materials
and Methods available on Dryad for details). With these,
we constructed a concatenated alignment with three
partitions, corresponding to the three codon positions.
We assumed GTR+� for the model of sequence evolution
and we used the prior of 3.33 for the average substitution
rate per site per 100 myr, following Matthee et al. (2004).
Lepus is poorly represented in the fossil record. The
earliest hare record dates to the early Pleistocene [2.5
million years ago (Ma); White 1991; Lopez-Martinez
2008], which is much more recent than molecular
estimates for the genus extrapolated from deeper fossil
calibrations (4–6 Ma; Yamada et al. 2002). Therefore, we
used two different calibrations for the species tree. We
either (1) used molecular estimates of 4–6 myr for the
time of the most recent common ancestor (TMRCA) of
Lepus extrapolated from deep fossil record calibrations
of the order Lagomorpha (Yamada et al. 2002) and 9.7-
14.5 myr for the TMRCA of Oryctolagus-Lepus divergence
(Matthee et al. 2004) or (2) used fossil estimates of 2.5
myr for the lower bound of Lepus diversification and
constrained the root to be no older than 4.8 myr, which
is when the fossil record suggests that the common
ancestor of rabbits and hares existed (Hibbard 1963;
White 1991). We discarded the first 1,000,000 samples
as burn-in and ran the program until we gathered
1,000,000 samples from the posterior, sampling every
10 iterations, and repeated the analysis twice to ensure
convergence. We checked for lack of convergence
between the two runs by confirming a linear correlation
between posterior times, trendless trace plots, and
high effective sample size values (ESS > 200) following
dos Reis and Yang (2019). Finally, we also checked
for a linear relationship between posterior times and
confidence interval widths in infinite sites plots (Inoue
et al. 2010).
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Ancestral Range Reconstruction
We used the R package BioGeoBEARS (Matzke 2013,

2014a, 2014b) to estimate ancestral ranges for the species
in our dated phylogenies. For this analysis, we assigned
each species to North America, Eurasia or Africa.
Note that the Cape hare sensu lato is distributed in
Africa and Eurasia, but Lado et al. (2019) showed deep
divergence and nonmonophyly of African and Eurasian
lineages. Because our Cape hare samples represent
the African lineages, we assigned the Cape hare
distribution to Africa. In BioGeoBEARS, we implemented
a maximum likelihood framework to estimate ancestral
ranges under three biogeographical models: DEC
(dispersal-extinction-cladogenesis; Ree and Smith 2008),
DIVA (dispersal-vicariance analysis; Ronquist 1997) and
BayArea (Bayesian inference of historical biogeography
for discrete areas; Landis et al. 2013). For each method,
we tested each model with and without founder-event
speciation (j parameter; Matzke 2014b), resulting in six
models in total: DEC, DEC+J, DIVALIKE, DIVALIKE+J,
BAYAREALIKE and BAYAREALIKE+J. The best fitting
model was assessed with the likelihood ratio test (LRT),
the Akaike Information criterion (AIC) and corrected
AIC (AICc).

Gene Tree Discordance and Phylogenetic Networks
We performed a series of analyses to explore the

amount and effect of gene tree discordance in our
dataset. To minimize misinterpreting poor phylogenetic
resolution as discordance, we retained only the filtered
gene trees used as input for ASTRAL. These trees
were used to estimate a SplitsTree4 network (v4.14.6;
Huson and Bryant 2006) with the option “Consensus
Network with distances as means” and a 5% weight
threshold to draw a split, and a majority rule
consensus tree with RAxML (-L MRE option), including
internode certainty scores (Salichos et al. 2014). We then
used DiscoVista (Sayyari et al. 2018) to plot ASTRAL
quartet frequencies around nodes of interest. Finally,
we calculated Robinson–Foulds normalized distances
between gene trees and the ASTRAL species tree where
individuals are not assigned to species, and among gene
trees using the function RF.dist() from the R package
phangorn (2.4.0; Schliep 2011). This metric varies between
0 (no discordance between trees) and 1 (complete
discordance).

We used PhyloNet (v3.6.6; Yu and Nakhleh 2015)
to model species relationships under the network
multispecies coalescent model, using all local
genealogies (tree certainty scores > 5). Given our
extensive dataset, we applied the pseudomaximum
likelihood inference of species networks (Yu and
Nakhleh 2015). We ran InferNetwork_MPL (Yu and
Nakhleh 2015) with 0 up to 4 migration events (due
to computational limitations), associating individuals
to species (option -a), and optimizing branch lengths
and inheritance probabilities to compute likelihoods
for each proposed network (option -o). We used the

best likelihoods per run to calculate BIC and AICc
following Yu et al. (2012, 2014) to compare the resulting
networks. Networks were visualized with IcyTree
(https://icytree.org; last accessed July 2019).

Given that the pseudomaximum likelihood network
inference is computationally intensive (Yu and Nakhleh
2015), network support could not be inferred with
bootstraps. Therefore, we additionally used Treemix
and “f-branch” statistics (see below) to determine if
ancestral reticulations were consistently inferred across
methods. We reconstructed ancestral population graphs
with TreeMix (v1.13, options -global, -noss, and -
se; Pickrell and Pritchard 2012) following the steps
used to generate an SNV dataset for SVDQuartets but
only including Lepus species. We randomly phased
the SNV alignments with a custom script (available
at https://github.com/evochange) and created the
TreeMix input using the script TreeMix_from_nex.py
(https://github.com/mgharvey). We allowed 0 to 9
migration events and used the white-sided jackrabbit (L.
callotis) as the outgroup relative to all other Lepus species
(see Results).

Genetic Diversity, Divergence and Admixture
We used the genomics general toolkit

(https://github.com/simonhmartin/; last accessed
January 14, 2019) to estimate pairwise genetic distances
(dxy) between species and nucleotide diversity (�)
within species, and a custom script (available at
https://github.com/evochange) to calculate the
number of heterozygous sites per individual and the
subset shared between at least one individual of each
pair of species (used as proxy for shared variation).
All diversity estimates were based on a genome-wide
concatenated alignment, where we excluded sites with
missing information for > 30% of the individuals.

We then used genomics general and custom scripts
(available at https://github.com/evochange) to
calculate several variants of the D-statistics (Green et al.
2010) from the informative sites in the same filtered
alignment, treating the European rabbit sequence as
the ancestral state (additional details are provided in
the Supplementary Materials and Methods). Briefly,
we calculated the minimum absolute value of D (Dmin)
(Malinsky et al. 2018) for all possible species trios.
We calculated z-scores for each D value using a 1 Mb
block jackknife approach. After finding the minimum
D per trio, D values with Bonferroni-corrected P
< 0.05 were considered significantly different from
zero. We then calculated the “f-branch” statistic
(fb(C)) (Malinsky et al. 2018). The “f-branch” statistic
measures admixture proportion between species C
and branch b by calculating admixture proportion
among all possible f (A,B,C,O) combinations where
A are all descendants of branch a (sister to b), B are
all descendants of branch b, and C is the donor taxa.
fb(C) is the minimum f value across all possible B and
the median across all possible A. A significant fb(C)
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value means that all descendants B of branch b share
alleles with C, which is more parsimoniously explained
by an event of ancestral introgression from C to b
(Malinsky et al. 2018). Using the inferred species tree,
we determined all conformations (A,B; C,O) needed to
calculate fb(C) for all pairs of C species and b branches
following Malinsky et al. (2018) with custom scripts
(available at https://github.com/evochange) and R
package treeman (1.1.3; Bennett et al. 2017). For each
conformation, we calculated “admixture proportion”
(fG) as defined in Martin et al. (2015) and Malinsky et al.
(2018) and z-scores with 1 Mb block jackknife approach
following Malinsky et al. (2018). “f-branch” values
with Bonferroni-corrected P < 0.05 were considered
significantly different from zero. We also calculated fhom
(Martin et al. 2015) between black-tailed jackrabbits (P3)
and several snowshoe hare populations (as P1 and P2)
to evaluate levels of admixture estimated with fb(C) for
this species pair (see Results and Discussion).

We also used ABBABABAwindows.py from genomics
general to estimate the fraction of admixture (fd) (Martin
et al. 2015) across 50 kb genomic sliding windows (> 100
sites, 5 kb steps), to localize tracts of introgression in
the genomes of northern latitude species. We performed
three scans testing introgression between snowshoe
hares (L. americanus) as P3 and Alaskan hares (L. othus),
mountain hares (L. timidus) or white-tailed jackrabbits
(L. townsendii) as alternative P2, using the Iberian hare
(L. granatensis) as P1. Windows of top 0.5% fd were
considered significant. Following Liu et al. (2015), we
considered that significant windows in all three tests
reflected introgression between snowshoe hares and the
ancestral lineage of white-tailed jackrabbits/mountain
hares/Alaskan hares, while significant windows in only
one test result from recent introgression between the
focal extant species. We obtained the annotation of genes
in these windows from the European rabbit reference
using biomaRt and used unique annotations to perform
an enrichment analysis in g:Profiler (accessed September
2019; Raudvere et al. 2019) using default parameters. We
also calculated dxy for fd outlier windows and the exome-
wide dxy distribution between the focal pair of P2-P3
species using popgenWindows.py from genomics general to
calculate dxy in windows of 50 kb (> 2000 sites, 5 kb
steps).

RESULTS

Whole Exome Sequencing Data
Custom DNA captures showed high efficiency

(32.3 average fold-enrichment) and specificity (average
10% of sequenced bases off-target; Supplementary
Table S2 available on Dryad). Mapping cleaned reads
onto species-specific pseudoreferences resulted in an
average target sequencing coverage of 16× (5–35× on
average per sample; Supplementary Table S2 available
on Dryad) with 57.8 million genotyped sites per
individual (Supplementary Table S2 available on Dryad).

Two lower coverage individuals (one hare individual
and one pygmy rabbit individual) and one locality
duplicate (one hare) were removed from the final
dataset to maximize data quality and avoid geographic
redundancy (Supplementary Table S1 available on
Dryad). Combining new and published data, all analyses
were performed on a dataset of 15 hare species (32
individuals), one pygmy rabbit, and the European
rabbit reference genome, unless otherwise noted (see
Supplementary Table S1 available on Dryad).

Phylogenetic Relationships among Hares
The overall topologies of the concatenated ML

phylogeny (11,949,529 positions with no missing data)
and of the multispecies-coalescent species trees of
ASTRAL (8,889 gene trees estimated from 50 kb genomic
intervals; alignment lengths between 1 kb and 29 kb)
and SVDquartets (45,779 unlinked SNVs) were largely
concordant (Supplementary Figs. S1, S2, and S3 available
on Dryad). Most branching relationships were highly
supported in general (ASTRAL posterior probabilities =
1, SVDquartets bootstraps > 90; Fig. 1 and Supplementary
Figs. S1, S2, S3, and S4 available on Dryad) with most
species recovered as monophyletic (Supplementary
Figs. S1, S2a, and S3a available on Dryad). The only
exceptions involved very closely related species with
disputed taxonomy, such as paraphyly of the mountain
hare with the Alaskan hare, and the broom hare (L.
castroviejoi) with the Corsican hare (L. corsicanus) (Alves
et al. 2008; Melo-Ferreira et al. 2012), or paraphyly of
a species with known deep intraspecific divergence, the
Cape hare (L. capensis), with the Ethiopian hare (L. fagani)
(Lado et al. 2019; Supplementary Figs. S1, S2, and S3 and
Supplementary Tables S3 and S4 available on Dryad).

Our two calibration strategies recovered overlapping
95% high posterior density (HPD) intervals of
divergence times for relatively recent splits (e.g.,
diversification of Eurasian and African species;
Supplementary Table S5 available on Dryad), but the
Lepus-based fossil calibrations suggested more recent
ages for deeper nodes (Supplementary Table S5 and
Fig. S5 available on Dryad). For instance, the hare
radiation was estimated at ∼5.83 Mya (95% HPD
6.17–5.34 Ma) using fossil calibrations outside Lepus,
while Lepus fossil calibration sets it at ∼4.05 Ma (95%
HPD 5.00–3.18 Ma). All species tree analyses were
consistent in showing that the deepest branching
events involved North American species: white-sided
jackrabbit, black-tailed jackrabbit, and snowshoe hare
(Fig. 1b). In accordance, ancestral reconstruction of
biogeographic distributions based on the best fitting
DIVALIKE+J model supported a North America origin,
with subsequent colonization of Eurasia (2.85 and 1.99
Ma for deep and Lepus-fossil calibration, respectively)
and Africa (1.85 and 1.33 Ma) (Fig. 1c and Supplementary
Table S6 available on Dryad). We also found support
for one or more recolonization events of North America
from Eurasia, represented by white-tailed jackrabbits
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FIGURE 2. The hare (Lepus spp.) species tree is underlined by extensive gene tree incongruence. Split network constructed from 8,889 gene
trees (5% threshold) shows discordance among the gene tree topologies (cuboid structures represent alternative topologies) in deeper nodes of
the species tree. Species are marked in accordance with the continents where they are distributed.

and Alaskan hares (Fig. 1 and Supplementary Fig. S6
and Table S7 available on Dryad).

Incomplete Lineage Sorting and Introgression
We recovered a highly supported species tree

across phylogenetic methods, albeit with considerable
phylogenetic discordance among sequenced regions
[average Robinson–Foulds (RF) pairwise distance
between local trees was 0.73]. No local tree completely
recovered the species tree topology (minimum RF
distance between gene and species tree was 0.13)
(Supplementary Fig. S7 available on Dryad) and the
majority rule consensus tree showed low internode
certainty (Supplementary Fig. S8 available on Dryad).
Phylogenetic discordance was also apparent in the
ASTRAL species tree with all but five branches showing
quartet scores below 0.6 (Fig. 1b, Supplementary
Figs. S2 and S4 and Tables S8 and S9 available
on Dryad). The inference of a concordant species
tree across ASTRAL and SVDquartets suggests that
the low quartet scores are not highly impacted by
gene tree estimation error (Molloy and Warnow
2018). The splits network analysis of individual gene
trees also supported many alternative relationships
(represented by cuboid structures connecting alternative
topologies) particularly involving deeper branches
(Fig. 2). We estimated similar levels of discordance
between X-linked and autosomal genealogies and
the inferred species trees (Supplementary Fig. S7
available on Dryad). Furthermore, a species tree inferred

with X-linked data differed from the genome-wide
species tree and showed lower overall branch support
(Supplementary Fig. S9 and Table S10 available on
Dryad). Nucleotide diversity was relatively low within
species (0.13–0.63%) and overlapped with estimates of
absolute genetic divergence between species (dxy = 0.17–
1.11%; Supplementary Tables S3 and S4 available on
Dryad). However, these ranges reflect some taxonomic
uncertainties. For example, some instances of low
interspecific divergence concern species with debated
species-level status (e.g., the Corsican-broom hare and
mountain-Alaskan hare complexes; Alves et al. 2008;
Melo-Ferreira et al. 2012), while high diversity may
reflect intraspecific cryptic divergence (e.g., snowshoe
hares, Cheng et al. 2014; Melo-Ferreira et al. 2014; Cape
hares, Lado et al. 2019).

On average, 49% of heterozygous sites were shared
between species (Supplementary Table S11 available
on Dryad). Considerable phylogenetic discordance
among gene trees combined with such high levels
of shared polymorphism between species could be
explained by incomplete lineage sorting, secondary
introgression, or a combination of both processes. We
found that 88% of the minimum absolute D-statistics
(Dmin) (Malinsky et al. 2018) for all trios of species
in our dataset were significantly different from zero
(Bonferroni-corrected P<0.05; Supplementary Fig. S10
available on Dryad), providing overwhelming support
for gene flow either between extant species pairs or
between ancestral lineages (Malinsky et al. 2018). Our
inferences with the multispecies network coalescent
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model (Supplementary Fig. S11 available on Dryad),
ancestral population graph reconstruction (based on
30,709 biallelic SNVs; Supplementary Figs. S12 and
S13 available on Dryad), and estimates of admixture
proportions among species based on the “f-branch”
metric (fb(C)) (Fig. 3) were all consistent with
recurrent gene flow between species layered across
the diversification of Lepus. With fb(C) (Fig. 3) and
network analysis (Supplementary Figs. S11 and S12
available on Dryad), we detected introgression among
extant species pairs within all of the major geographic
regions that are currently sympatric, suggesting ongoing
or recent hybridization. For example, strong gene
flow was found between black-tailed jackrabbits and
snowshoe hares in North America (fb(C)=19%;P=
2.04E-169), or between European brown hares and
mountain hares from Eurasia (fb(C)=18%;P=1.73E-23;
Fig. 3 and Supplementary Table S1 available on Dryad).
In general, we found decreased admixture proportions
with increased genetic divergence between species,
although this correlation was only significant when
considering species with nonoverlapping distributions
(Fig. 4). Several species pairs with current contact zones
showed admixture even when genetic divergence was
relatively high, such as snowshoe hares and black-
tailed jackrabbits (dxy =0.97%; TMRCA ∼ 4.8 Ma,
Supplementary Fig. S5 and Tables S4 and S5 available
on Dryad).

We also found evidence for introgression between
ancestral populations, which has likely affected deeper
branches of the species tree. These ancestral events
were detected as network reticulations, as significant
fb(C) values among ancestral branches (y-axis in Fig. 3)
or similar admixture levels shared among species
within clades (x-axis in Fig. 3). We detected ancestral
events of introgression connecting major clades within
Eurasia (e.g., European hares and the ancestor of the
mountain hare/Alaskan hare/white-tailed jackrabbit
clade), African and Eurasian lineages (e.g., ancestral of
all African species and the Corsican and broom hare
ancestral), and Eurasian and North American lineages
(e.g., snowshoe hares and the ancestral lineage of the
mountain hare/Alaskan hare/white-tailed jackrabbit;
Figs. 3 and 4, Supplementary Figs. S11 and S12,
and Table S12 available on Dryad). Finally, we found
significant introgression among species from different
continents, such as North American hares and species
from Africa and Western Europe (Figs. 3 and 4), which
was also suggested by a network with two reticulations
and by ancestral population graph reconstruction
(Supplementary Figs. S11c and S12 available on Dryad).
These results suggest that introgression affected the
very early branches of the Lepus radiation, and
that the genetic legacy of these gene flow events
persists in the gene pool of descendant species today
(Figs. 3 and 4).

Genes Affected by Ancestral Introgression
We consistently detected ancestral introgression

between the ancestors of coat color changing species
in our dataset: white-tailed jackrabbits, mountain
hares, Alaskan hares, and snowshoe hares (Fig. 3
and Supplementary Fig. S11 available on Dryad).
Motivated by recent work showing that introgressive
hybridization has shaped local adaptation in seasonal
coat color changing species (Jones et al. 2018, 2020a;
Giska et al. 2019), we examined the contribution of
gene flow to standing variation and local adaptation
in these species. We detected 119 putative windows of
ancient introgression across all major chromosomes,
highlighting the genome-wide contribution of ancestral
introgression (Fig. 5; Supplementary Table S13
available on Dryad). The fd outlier windows of
ancestral introgression contained 54 annotated genes
(Supplementary Table S14 available on Dryad). This
set of genes was enriched for the gene ontology term
“E-Box binding” (3 of the 54 genes; Supplementary
Table S15 available on Dryad), a DNA motif found
in the promoters of many genes, suggesting that
genomic regions affected by ancient introgression
may be enriched for transcription factors involved
in trans-regulation of gene expression. Among these
transcription factors we found the circadian clock related
gene ARNTL2 (Sasaki et al. 2009) and pigmentation
related gene TCF4 (Furumura et al. 2001; Le Pape et al.
2009) (Fig. 5). In addition, the list of 54 genes includes
a gene involved in brown fat differentiation (EBF2;
Rajakumari et al. 2013), and a photoreceptor-related
gene (PDE6H; Kohl et al. 2012).

DISCUSSION

We used phylogenetic analyses of whole exome
data to tease apart signatures of stochastic lineage
sorting and admixture across the evolutionary history
of the Lepus radiation. By accounting for these sources
of phylogenetic discordance, we were able to detect
pervasive introgression across the evolution of this
recent and rapid mammalian radiation. Below, we
discuss the biogeographic and evolutionary implications
of our analyses, focusing on the long-term impacts of
temporally layered hybridization in shaping patterns
of shared genetic variation within and among extant
species.

The Effect of Persistent Gene Flow on Phylogenetic Inference
We present a resolved genome-wide phylogeny for the

genus Lepus despite extensive incomplete lineage sorting
and pervasive gene flow. Our genome-wide analysis
covered all major lineages across the worldwide range of
hares, substantially extending previous analyses based
on more limited genetic sampling (Halanych et al. 1999;
Melo-Ferreira et al. 2012; Ge et al. 2013; Tolesa et al.
2017). A systematic evaluation of species limits and
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FIGURE 3. Admixture events are distributed across the hare (Lepus spp.) species tree. The “f-branch” statistic fb(C) represents excess allele
sharing between branches b (y-axis) and C (x-axis) of the species tree in Figure 1b. The gradient represents the fb(C) score, dark gray represents
tests not consistent with the species tree (for each branch b, having itself or a sister taxon as donor C) and asterisks denote block jackknifing
significance at P< 0.05 (after Bonferroni correction). Tips of the tree are marked according to their current distribution, and ancestral tips (dashed
lines and labeled with letters) are marked according to the ancestral range reconstruction in Figure 1c [two colors represent the inference of two
ranges with equivalent (∼0.5) probability]. Ancestral tips are labeled from A to L corresponding to labels in Supplementary Table S12 available
on Dryad.

hare taxonomy is beyond the scope of our work, as it
would require genome-wide data from an expanded
inter and intraspecific sample. However, our sampling
should not bias the estimated phylogenetic relationships
and may even underestimate species diversity. Thus our
inferences of shared variation across species are likely to
be conservative.

To estimate species relationships, we combined
species tree inferences that do not account for gene flow
with network-based inferences that explicitly consider
introgression. The resulting topologies were generally
consistent between methods when considering up to
three reticulations (Fig. 1 and Supplementary Fig. S11
available on Dryad). However, there were limits to
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FIGURE 4. Admixture proportions decrease with genetic divergence
between allopatric species. We plot the “f-branch” (fb(C)) values against
exome-wide divergence (dxy) for extant species pairs, differentiating
species with overlapping (sympatric/parapatric) or nonoverlapping
(allopatric) distributions. The tendency line represents a linear
regression relating dxy and all (significant and non-significant) fb(C)
values calculated with function lm() in R.

this approach. For example, the alternative placement
of European, Corsican, and broom hares, as closer
to the Eurasian or African Lepus clades depended on
the number of reticulations considered (Supplementary
Fig. S11 available on Dryad). This uncertainty likely
reflects long-term admixture among Eurasian and
African lineages, including the European hare (Fig. 3 and
Supplementary Fig. S11 available on Dryad) whose range
overlaps with species from both continents (Fig. 1a).
Another example is the alternative sister relationship
of snowshoe hares and black-tailed jackrabbits in the
network with no reticulation (Supplementary Fig. S11
available on Dryad), which could result from ancestral
introgression between these species (see below). While
an increased number of reticulation events could better
represent the widespread gene flow uncovered in
our work, allowing for more than three reticulations
resulted in increased branch compression and therefore
did not help resolve gene-to-gene incongruences
(Supplementary Fig. S11 available on Dryad; Yu and
Nakhleh 2015; Wen et al. 2016).

We found that gene trees constructed from X-
linked loci or autosome-linked loci showed similar
levels of discordance with the exome-wide species
tree (Supplementary Fig. S7 available on Dryad). In
general, the X chromosome could be expected to
show less phylogenetic discordance due to its smaller
effective population size and faster lineage sorting, and
a tendency to accumulate hybrid incompatibilities (i.e.,
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FIGURE 5. The impact of ancestral introgression on extant northern
latitude species. a) Events of past and recent admixture inferred in
this study involving snowshoe, Alaskan hares, mountain hares and
white-tailed jackrabbits. The arrow indicates the direction of ancestral
introgression inferred by PhyloNet and “f-branch” and dashed lines
indicate recent introgression inferred with “f-branch.” Values above
the lines represent admixture proportion (f) estimated with “f-branch”
or inheritance probability (IP) estimated with PhyloNet; b) Genomic
distribution of ancestral blocks of introgression (circles) inferred as
shared outlier windows among fraction of admixture (fd) analysis
testing for admixture among snowshoe hares and each one of the three
other northern latitude species. Tests were run in 50 kb genomic sliding
windows, and outlier windows are in the top 0.5% of the fd distribution.

the large X-effect; Fontaine et al. 2015; Edelman et al. 2019;
Li et al. 2019). Although there is evidence for reduced
X-linked gene flow between some hybridizing European
lineages (Seixas et al. 2018), very little is known about the
genetic architecture of reproductive isolation between
hare species. Moreover, less phylogenetic discordance
of loci involved in reproductive isolation may not be
always expected, particularly when speciation events are
clustered in time (Wang and Hahn 2018) as is the case in
Lepus (Supplementary Fig. S5 available on Dryad).

The Timing and Biogeography of the Lepus Radiation
Our results suggest that the Lepus diversification

followed major climatic shifts that occurred during the
late Miocene, Pliocene, and Pleistocene, similar to other
terrestrial mammals (Simpson 1947; Ge et al. 2013). We
inferred a North American origin between 5.83 Ma and
4.05 Ma [deep or Lepus fossil calibrations, respectively,
in agreement with Hibbard (1963), Halanych et al.
(1999), Melo-Ferreira et al. (2012), and Ge et al. (2013)],
coinciding with a global cold and dry period of the
late Miocene that favored the expansion of grasslands
worldwide (Osborne and Beerling 2006; Ge et al. 2013).
The establishment of the Bering land bridges during
late Pliocene and Pleistocene glacial periods (Simpson
1947; Hopkins 1959; Cook et al. 2016) may have allowed
the subsequent colonization of Eurasia (∼2.77–1.99 Ma).
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Finally, we inferred secondary colonization of North
America from Eurasia within the last 1 myr (Fig. 1
and Supplementary Figs. S5 and S6 available on Dryad;
Halanych et al. 1999), in agreement with the Eurasia-
North America exchange of cold-adapted fauna during
Pleistocene glacial periods (Simpson 1947; Hoberg et al.
2012).

We note that our finding of pervasive introgression
may distort aspects of these biogeographic inferences
(Leaché et al. 2014; Solís-Lemus et al. 2016; Long and
Kubatko 2018; Li et al. 2019; Jiao et al. 2020). If the inferred
topology of the Lepus phylogeny is correct, as discussed
above, then the general biogeographic reconstructions
are probably robust. However, the timing of these events
remains tentative given potential estimation bias caused
by ancestral gene flow (Leaché et al. 2014; Li et al.
2019) and a lack of varied, independent, and reliable
calibration points.

The Legacy of Introgression during the Rapid Radiation of
Hares

Our inferences indicate that lineages often hybridized
when they came into contact during the worldwide
expansion of Lepus. Some of the inferred reticulation
events overlap with known recent introgression, such as
between mountain hares and European hares (Levänen
et al. 2018) or between snowshoe hares and black-
tailed jackrabbits (Jones et al. 2018, 2020a). However,
our analysis also revealed prevailing signatures of
deeper hybridization between ancestral populations,
suggesting a persistent contribution of secondary
introgression during the diversification of hares. These
past hybridization events have resulted in extensive
shared polymorphism among extant species (Fig. 3 and
Supplementary Tables S11 and S12 and Figs. S10, S11,
and S12 available on Dryad), with significant admixture
still detected among species with nonoverlapping
distributions, even from different continents
(Figs. 3 and 4).

Our analyses highlight how ancient gene flow
can obscure accurate detection of contemporary
hybridization. Similar to other systems (Malinsky
et al. 2018; Edelman et al. 2019; Li et al. 2019), we
estimated high levels of introgression based on D-
statistics (e.g., 88% of Dmin values across all possible
species trios were significant), but less reticulation after
taking phylogeny into account (e.g., 33% of “f-branch”
statistics were significant). These findings suggest that
phylogenetic correlation causes nonindependence of
summary-statistics and can thus lead to false pairwise
inferences of gene flow between species (Eaton et al.
2015; Malinsky et al. 2018; Li et al. 2019). Given
these results, signatures of hybridization among closely
related species should be interpreted in the context of
broader phylogenetic relationships whenever possible.

We also detected some discrepancies between the
magnitude of gene flow inferred here and in previous
works, which underscores the challenges of quantifying

introgression across a reticulating radiation. For
instance, we inferred substantial admixture proportions
between black-tailed jackrabbits and snowshoe hares
(fb(C)=19%, Fig. 3 and Supplementary Table S12
available on Dryad). These estimates are one order
of magnitude higher than recent studies suggesting
that ∼2–3% of genomic variation in the Pacific
Northwest snowshoe hare populations descends from
hybridization with black-tailed jackrabbits in the
last ∼10,000 generations (Jones et al. 2018, 2020a).
Ancient introgression persisting in all snowshoe hare
populations could reconcile this discrepancy. Indeed,
we recovered consistent results (fhom ∼3%) when
we infer admixture proportions among black-tailed
jackrabbits and different snowshoe hare populations
(Supplementary Table S16 available on Dryad), which
likely reflects recent and geographically localized
introgression. However, our estimates of overall
admixture proportions between these species should
be taken with caution as they depend on the accurate
reconstruction of a short internal branch not fully
supported across methods, and a species (snowshoe
hare) that has been involved in multiple instances of
introgression with different hare lineages (Figs. 3 and
5 and Supplementary Table S12 and Fig. S11 available on
Dryad).

Introgression between species is often limited by
purifying selection against hybrid incompatibilities
(Schumer et al. 2018; Edelman et al. 2019), which
agrees with the predominantly negative consequences of
hybridization (Mayr 1963). Nonetheless, hybridization
is also expected to produce novel allelic combinations
that increase phenotypic variation (Grant and Grant
2019; Marques et al. 2019). If coincident with ecological
opportunity, introgressed variation could broadly
facilitate adaptation (Grant and Grant 2019; Taylor and
Larson 2019). Recent work has shown at least two
instances where introgression between Lepus species has
driven local adaptation (Jones et al. 2018; Giska et al.
2019), and standing introgressed variation may have
contributed even more generally to adaptation during
the radiation. We found that genetic variation introduced
by ancient hybridization can persist through several
speciation events (Figs. 3 and 4).

While much of large reservoir of shared variation
may reflect stochastic sorting of neutral variation, some
may have been maintained by selection (Guerrero and
Hahn 2017; Jamie and Meier 2020) and helped facilitate
colonization of the diverse habitats currently inhabited
by hare species, from desert to arctic environments (Ge
et al. 2013; Smith et al. 2018). In this respect, introgression
between the ancestor of mountain hares/Alaskan
hares/white-tailed jackrabbits and snowshoe hares
(or an ancestral lineage) is particularly intriguing.
These four species have adapted to highly seasonal
environments through striking forms of phenotypic
plasticity (e.g., seasonal coat color change; Mills et al.
2013; Zimova et al. 2018) that have been at least
partially shaped by adaptive introgression at the Agouti
pigmentation gene from noncolor changing species
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(ASIP; Jones et al. 2018; Giska et al. 2019). Here, we
estimated that a pulse of ancient introgression occurred
at least 0.71 Ma (Lepus fossil calibration; Supplementary
Fig. S5 available on Dryad) and affected genomic regions
containing genes associated with circadian rhythm
regulation (ARNTL2; Sasaki et al. 2009), pigmentation
(TCF4; Furumura et al. 2001; Le Pape et al. 2009),
thermoregulation (EBF2; Rajakumari et al. 2013), and
visual perception (PDE6H; Kohl et al. 2012). While
ASIP would also be a likely candidate for adaptive
introgression between these lineages (Jones et al. 2018),
our exome sequencing coverage of this region was too
sparse for detailed window-based analysis.

The functions of these introgressed genes overlap
with common physiological adaptations of northern
latitude animals to seasonal conditions, such as higher
metabolic rates, regulation of body temperature and
nonshivering thermogenesis (Hart et al. 1965; Feist and
Rosenmann 1975; Rogowitz 1990; Pyörnilä et al. 2008;
Sheriff et al. 2009), seasonal camouflage (Grange 1932;
Hewson 1958; Hansen and Bear 1963; Mills et al. 2018;
Zimova et al. 2018), and visual acuity in response to
dim winter light in northern latitudes (Stokkan et al.
2013). Furthermore, the functions of two of these genes,
pigmentation and circadian rhythms, are linked to
pathways activated during seasonal coat color changing
molts (Ferreira et al. 2017, 2020). The functional relevance
of these candidates to local adaptation must await
further testing. Nonetheless, substantial introgression
along the rapid diversification of a group of organisms,
as we describe here, may bolster genetic variation within
species and have a greater role in local adaptation
than previously anticipated (Grant and Grant 2019;
Taylor and Larson 2019). However, we also cannot
exclude that some of these shared variants have been
maintained by long-term balancing selection rather
than secondary introgression (Supplementary Fig. S14
available on Dryad; Smith and Kronforst 2013; Liu et al.
2015; Guerrero and Hahn 2017). Regardless of origin, the
Lepus radiation provides an intriguing system by which
to test the long-term evolutionary importance of shared
genetic variation across a rapid radiation.
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