# Ya Ha Tinda Elk & Predator Study





# **Annual Report 2015 - 2016**

Submitted to: Parks Canada, Alberta ESRD & Project Stakeholders

Prepared by:
Jodi Berg, Eric Spilker,
Josh Killeen &
Evelyn Merrill
University of Alberta

Mark Hebblewhite *University of Montana* 

10 May 2016

#### **ACKNOWLEDGEMENTS**

We thank Parks Canada staff Blair Fyten, David Gummer, and Bill Hunt for providing logistical and financial support, especially during the winter capture season. For their never-ending help, patience and understanding, we thank the Ya Ha Tinda ranch staff: Rick and Jean Smith, Rob Jennings, and Tom McKenzie. Anne Hubbs (AB ESRD), Rachel Cook (NCASI), P.J. White (NPS), Bruce Johnson (OR DFW), Shannon Barber-Meyer (USGS), Simone Ciuti (U Alberta), and Holger Bohm (U Alberta) all provided helpful advice and discussions, and Dr. Todd Shury (Parks Canada), Dr. Geoff Skinner (Parks Canada), Dr. Asa Fahlman, Dr. Rob McCorkell (U Calgary), and Dr. Owen Smith (U Calgary) gave their time, expert knowledge, and assistance during winter captures.

For guidance in dog training and for providing our project with great handlers and dogs, our appreciation goes to Julie Ubigau, Caleb Stanek, and Heath Smith from Conservation Canines. We also thank local residents, Alberta Trapper Association of Sundre and Friends of the Eastern Slopes Association for their interest in the project.

University of Alberta staff, volunteers, and interns assisted for various lengths of time, in various tasks surrounding the calf captures, monitoring, and logistics. We especially thank Celie Intering, Sabrina Wales, and Casey Berg.

#### PROJECT SUPPORTERS

This work would not have been possible without the financial and in-kind support from: Parks Canada, Natural Sciences and Engineering Research Council, Alberta Conservation Association, Alberta Environment and Parks, Minister's Special License- Hunting for Tomorrow and Alberta Fish and Game, University of Alberta, University of Montana, Rocky Mountain Elk Foundation, TD Friends of the Environment, Alberta Sport, Parks, Recreation & Wildlife Foundation, Safari Club International Foundation, Safari Club – Northern Alberta Chapter, International Association for Bear Management, the Wild Sheep Foundation Alberta, Center for Conservation Biology – University of Washington, Friends of the Eastern Slopes Association; and NASA (USA).

#### **SUGGESTED CITATION**

Berg, J.E., E. Spilker, J. Killeen, M. Hebblewhite, and E. Merrill. 2016. Ya Ha Tinda elk and predator study: Annual report 2015-2016. Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. 56 pp.

#### **DISCLAIMER**

This progress report contains preliminary data from ongoing academic research directed by the University of Alberta that will form portions of graduate student theses and scientific publications. Results and opinions presented herein are therefore considered preliminary and to be interpreted with caution, and are subject to revision.

#### **EXECUTIVE SUMMARY**

This report summarizes activities from the long-term studies of the Ya Ha Tinda (YHT) elk herd, including monitoring of adult female elk survival/mortality, migratory behavior, pregnancy rates, population size, ungulate pellet group counts, and grassland production on YHT grasslands up to 15 March 2016 (Section I). The report also includes preliminary summaries of years 3 and 4 of a study conducted by PhD student, Jodi Berg, at the University of Alberta addressing elk calf survival and cause-specific mortality (Section II), and a predator scat distribution study conducted by MSc student, Eric Spilker, at the University of Alberta (Section III).

In February-March 2015 and 2016, 64 and 46 adult female elk were free-range darted from horses. Pregnancy rates were 94% and 96%. All pregnant elk were collared and fit with vaginal implant transmitters (VITs) in both years to monitor elk calf survival. As of 15 March 2016 a total of 76 elk remain collared, including 46 GPS- and 30 VHF-collared elk.

We monitored VHF- and GPS-collared resident and eastern migrant elk on an almost daily basis during 2015 to determine migratory status and survival. In summer 2015, 29% of the GPS/VHF-radio-collared elk migrated to the east, on or near lands operated on by Sundre Forest Products – West Fraser and Shell Energy Canada. Twelve percent of the GPS- and VHF- radio-collared adult female elk migrated west into Banff National Park (BNP), and 59% remained resident on YHT. Of those elk that migrated into or through BNP in spring 2015, 5% went west and 7% went south. Spring migration ranged from 17 March to 4 July and fall migration from 11 August to 27 September.

Based on VITs and/or location of neonatal elk calves in 2015 (n = 54), 14% of cows gave birth in Banff National Park, 23% of cows gave birth to the north of the ranch mostly in the Bighorn Creek cut blocks and along Scalp Creek, 27% of the cows gave birth to the east of YHT, and 36% gave birth near YHT. No calves of the 8 pregnant, marked cows that migrated into BNP in spring 2015 were captured, but VITs of 5 cows were located later in the summer, and indicated that elk calved along the Panther, Cascade, and Bow valleys.

Thirty-four calves (22 residents, 12 eastern migrants) were captured and monitored in May and June 2015. The median birth date for calves (n = 103) born in 2013 - 2015 was 30 May and the mean mass at birth was  $17.7 \pm 2.1$  kg (n = 76). Calves of resident and eastern migrant elk equipped with radio ear tags were monitored 1-3x daily for mortality from a distance from birth through September, and monthly thereafter. Of these 34 calves, 14 (41%) were alive as of 15 March 2016. Of the known mortality causes in 2013 - 2015, most were attributed to bears (43%), followed by wolves (7%), and cougars (7%).

During the summers of 2014 and 2015, we used scat detection dogs to survey 1,057 km of transects distributed among 57 25-km<sup>2</sup> grid cells. Between both years we found a total of 1,259 carnivore scats. The carnivore family group with the highest number of scats detected were canids (62%) followed by ursids (30%) and felids (8%).

# **Table of Contents**

| Acknowledgements                                        | . <b></b>     | 2  |
|---------------------------------------------------------|---------------|----|
| Project Supporters                                      | • • • • • • • | 2  |
| Executive Summary                                       |               | 3  |
|                                                         |               | _  |
| SECTION I: Population Numbers, Demography, and Movement |               |    |
| Population Monitoring                                   |               |    |
| Ground counts                                           |               |    |
| Aerial surveys                                          |               |    |
| Pellet plot surveys                                     |               |    |
| Adult Elk Capture and Handling 2015 and 2016            |               |    |
| Adult Elk Telemetry                                     |               |    |
| Elk Demography                                          |               | 10 |
| Adult mortality                                         |               | 10 |
| Summer and winter calf:cow ratios                       |               | 11 |
| Pregnancy rates                                         | <b></b> .     | 14 |
| Migratory Behaviour                                     |               |    |
| Classifying migrants and residents                      |               |    |
| Migratory routes                                        |               |    |
| Timing of migration                                     |               |    |
|                                                         |               |    |
| SECTION II: Calf Captures and Monitoring                |               | 20 |
| Calving Areas                                           |               |    |
| Calf Capture Effort 2015                                |               | 20 |
| Calving                                                 |               |    |
| Post-capture Monitoring and Survival                    |               |    |
| Birth Site Characteristics                              |               |    |
|                                                         |               |    |
| SECTION III: Carnivore Scat Surveys                     |               | 27 |
| Study objectives                                        | <b></b>       | 27 |
| Methods                                                 |               | 28 |
| Results                                                 |               | 29 |
| On-going Analyses                                       |               | 30 |
|                                                         |               |    |
| Appendices                                              |               | 34 |
| I-1. Winter elk capture information                     |               |    |
| I-2. Details of western migrant locations               |               |    |
| I-3. Details of adult elk mortalities                   |               |    |
| I-4. Elk calf birth sites determined through VITs       |               |    |
| I-5. Other notes of interest                            |               |    |
| II-1. Elk calves captured                               |               |    |
| II-2. Elk calf capture form                             |               |    |
| II-3. Elk calf measurements                             |               |    |
| II-4. Elk calf mortalities                              |               |    |
|                                                         |               |    |
| III-1. Scat characteristics                             |               |    |
| III-2. Scat collection data                             |               | 56 |

# **SECTION I: Elk Population Numbers, Demography, and Movement**

A collaborative research program has been ongoing since 2000 between researchers at the Universities of Alberta and Montana, Parks Canada, Alberta Fish and Wildlife, Alberta Conservation Association and other natural resource groups to determine how changes in the Ya Ha Tinda (YHT) elk population and their habitats have been influenced by abiotic (climate) and biotic (predation, human harvest, habitat management) factors. Our long-term focus has been on understanding the changing migratory behavior of elk and the trophic dynamics within this predator-prey, montane system. Over the last few decades migrant to resident ratio has substantially decreased from 12:1 (1977-1987) to 3:1 (1988-2004) (Hebblewhite et al. 2006) to more recently a ratio closer to 1:1 (Berg et al. 2014). Additionally, it appears that a new migratory strategy is emerging with a larger proportion of the migratory elk heading east of the YHT towards areas with potentially higher amounts of recreation and resource extraction industries rather than west into Banff National Park (Killeen et al. 2016). In the early 2000s, adult cow elk migrating into Banff National Park were found to have access to higher-quality forage but were also exposed to high wolf-caused mortality (Hebblewhite and Merrill 2011). Population modeling predicted the YHT herd would stabilize due to density-dependent predation, but the herd has continued to decline (Glines et al. 2011). Recent cow:calf ratios have indicated that calf survival of elk migrating east on to industrial forest may have higher calf survival. Further, our past studies of predation risk on elk has focused on wolves (Canis lupus), whereas the Ya Tinda is a multi-predator system. As a result we expanded our focus to address the community of predators in this area, in particular in relation to calf mortality. Our studies of the elk population at Ya Ha Tinda represent one of the longest elk population studies in a system with intact natural predators

This report summarizes activities up to 15 March 2016 including:

- (1) long-term monitoring of the YHT elk herd demography, movements, population size
- (2) results from the third and fourth-year efforts of the elk calf mortality study, and
- (3) scat-based surveys of predators.



# **Population Monitoring**

#### **Ground Counts**

In general, the highest minimum ground counts of the cow-calf herd in winter were conducted from horseback when the majority of animals were joined together in one large group on Ya Ha Tinda ranch grasslands (Table 1). We feel confident these counts represent the majority of the cow-calf herd because all radio-collared cows were present in the group, and no other large groups of elk were present on the ranch grasslands when these counts were made.

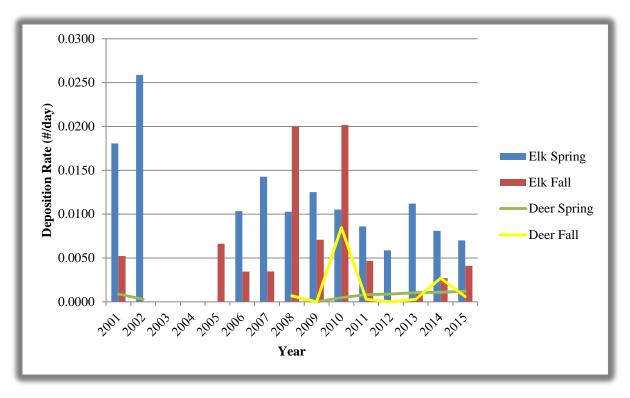
# Aerial Surveys

No summer aerial surveys were conducted in 2015. In winter 2014/15, a total count of 377 elk (including 331 in the cow-calf herd, 17 bulls, and 29 unknown animals) on the Ya Ha Tinda was obtained. Given the importance of the aerial survey data in understanding population trends in the long-term perspective in this population (Hebblewhite et al. 2006), we recommend aerial surveys continue to be coordinated between Alberta Environment and Parks Canada each winter.

#### Pellet Plot Surveys

We also continued long-term pellet counts in the grassland (<60% canopy cover; McInenly 2003) of the Ya Ha Tinda and forested and shrubby regions adjacent to the grasslands (Table 2, Fig. 1) to provide a within-season assessment of ungulate grazing pressure and relative abundance and distribution. Spring pellet counts are conducted during May and represent winter use of the ranch. Fall counts occur during September and represent summer use. Plots were 25 m² and located in a systematic grid at 250-m intervals across the grasslands.

Pellet groups were defined as containing at least 8 pellets and counted if >50% of the group was within the plot. Ungulate species recorded included elk, deer (*Odocoileus virginiana*, *O. hemonius*),


Highest Table population minimum counts of elk herd obtained from the ground in late winter (1 Feb. to 30 Apr.) at Ya Ha Tinda, Alberta, Canada.

| Date         | Total # |
|--------------|---------|
| 7-Feb-13     | 335     |
| 12-Feb-13    | 286     |
| 11-Mar-13    | 277     |
| 14-Mar-13    | 253     |
| 16-Mar-13    | 263     |
| 18-Mar-13    | 259     |
| 19-Mar-13    | 282     |
| 26-Mar-13    | 236     |
| 27-Mar-13    | 274     |
| 2013 Average | 273.9   |
| 7-Mar-14     | 338     |
| 9-Mar-14     | 333     |
| 10-Mar-14    | 338     |
| 18-Mar-14    | 332     |
| 4-Apr-14     | 387     |
| 6-Apr-14     | 335     |
| 7-Apr-14     | 256     |
| 8-Apr-14     | 286     |
| 10-Apr-14    | 322     |
| 2014 Average | 325.2   |
| 9-Feb-15     | 358     |
| 9-Mar-15     | 352     |
| 2015 Average | 355.0   |
|              | _       |

horse (*Equus*), and moose (*Alces alces*). Color, weathering, and shape of pellets were used to determine pellet species and age. Elk pellets deposited in the winter had a squared bullet shape, while summer pellets transition to a soft coalesced or disc form (Murie and Elbroch 2005). Deer pellets were similar but smaller, typically under 1 cm in length. Black pellets were considered recently deposited, whereas grey or white color indicated pellets deposited last season or even a year earlier. The presence of wolf (*Canis lupus*), coyote (*Canis latrans*), and bear (*Ursus arctos*) scat was recorded when encountered.

**Table 2.** Number of plots sampled, and minimum, maximum, mean, and standard deviation of past (McInenly 2003, Spaedtke 2009, Glines et al. 2011) and recent elk pellet groups counted, and deposition rates (#/day) observed during winter and summer elk pellet surveys at the Ya Ha Tinda ranch, Alberta, Canada.

| Season | Year    | n   | Min | Max | Mean | S.D. | No./Day | S.D.  |
|--------|---------|-----|-----|-----|------|------|---------|-------|
| Summer | 2000    | 275 | 0   | 8   | 0.57 | 1.07 |         |       |
| Summer | 2001    | 277 | 0   | 10  | 0.42 | 1.03 | 0.003   | 0.008 |
| Summer | 2005    | 37  | 0   | 3   | 0.78 | 1.00 | 0.008   | 0.010 |
| Summer | 2006    | 37  | 0   | 2   | 0.38 | 0.59 | 0.003   | 0.005 |
| Summer | 2007    | 45  | 0   | 3   | 0.31 | 0.67 | 0.003   | 0.006 |
| Summer | 2008    | 367 | 0   | 10  | 1.08 | 1.69 | 0.011   | 0.017 |
| Summer | 2009    | 325 | 0   | 8   | 0.84 | 1.32 | 0.006   | 0.009 |
| Summer | 2010    | 379 | 0   | 18  | 1.39 | 2.28 | 0.011   | 0.019 |
| Summer | 2011    | 356 | 0   | 6   | 0.43 | 0.89 | 0.004   | 0.008 |
| Summer | 2012    | 382 | 0   | 2   | 0.08 | 0.32 | 0.001   | 0.002 |
| Summer | 2013    | 366 | 0   | 5   | 0.23 | 0.63 | 0.002   | 0.005 |
| Summer | 2014    | 374 | 0   | 8   | 0.28 | 0.79 | 0.002   | 0.007 |
| Summer | 2015    | 376 | 0   | 9   | 0.52 | 1.08 | 0.004   | 0.009 |
|        |         |     |     |     |      |      |         |       |
| Winter | 2000/01 | 270 | 0   | 24  | 3.01 | 3.33 | 0.013   | 0.014 |
| Winter | 2001/02 | 272 | 0   | 21  | 3.94 | 2.60 | 0.017   | 0.018 |
| Winter | 2004/05 | 37  | 0   | 16  | 3.76 | 3.12 | n/a     | n/a   |
| Winter | 2005/06 | 38  | 0   | 14  | 2.74 | 3.36 | 0.011   | 0.013 |
| Winter | 2006/07 | 46  | 0   | 16  | 2.85 | 3.48 | 0.011   | 0.014 |
| Winter | 2007/08 | 120 | 0   | 16  | 1.47 | 2.31 | 0.007   | 0.011 |
| Winter | 2008/09 | 356 | 0   | 25  | 1.70 | 2.55 | 0.008   | 0.011 |
| Winter | 2009/10 | 359 | 0   | 16  | 1.37 | 2.09 | 0.006   | 0.010 |
| Winter | 2010/11 | 356 | 0   | 19  | 1.15 | 2.11 | 0.005   | 0.008 |
| Winter | 2011/12 | 357 | 0   | 16  | 0.90 | 1.80 | 0.004   | 0.001 |
| Winter | 2012/13 | 378 | 0   | 21  | 0.95 | 1.67 | 0.004   | 0.009 |
| Winter | 2013/14 | 358 | 0   | 22  | 0.63 | 1.32 | 0.003   | 0.009 |
| Winter | 2014/15 | 372 | 0   | 12  | 0.78 | 1.86 | 0.003   | 0.008 |



**Fig.1.** Changes in deposition rates (#/day) averaged across plots surveyed every year (n = 29) over time from winter 2000/01 to summer 2015; pellet groups counts were conducted at the Ya Ha Tinda ranch, Alberta, Canada.

# Adult Elk Capture and Handling 2015 and 2016

In February and March, 2015, 64 elk were free-range darted, immobilized, and subsequently

collared (26 GPS; 38 VHF; Fig. 3). Elk were palpated for pregnancy and fit with vaginal implant transmitters (VITs) if determined pregnant (Appendix I-1). All elk were ear-tagged in both ears. Hair and blood samples were taken from all elk. A vestigial canine tooth was removed for aging after blocking the nerve with Lidocaine. Body condition and chest girths were measured. The animals were kept on oxygen during the immobilization and vitals were monitored. Sixty of the 64 elk (94%) were pregnant and had a VIT inserted.

As a result of winter capture efforts, the YHT elk herd entered spring 2015 with a total of 74 collars (approximately 26-28% of



**Fig. 3.** Chemically immobilizing elk to determine pregnancy and fit elk with radio collars. *Photo credit: Dr. Asa Fahlman* 

the total adult female population), in the herd.

In February, 2016, 46 elk were free-range darted, immobilized, and subsequently GPS-collared. The same samples and measurements were taken as in the previous year. Forty-four of the 46 elk (96%) were pregnant and had a VIT inserted. As a result of winter capture efforts, the YHT elk herd is entering spring 2016 with a total of 80 collars (though 4 collared elk are considered dead/missing), in the herd.

# **Adult Elk Telemetry**

We have monitored a total of 286 unique collared adult female elk from 2002 - 2016 in the YHT herd. On average, we have had 85 adult female elk radio-collared per year, with 70 VHF collars/year and 14 GPS collars/year, with a range of 4 - 46 GPS collars deployed in any one year (Table 4). Because some elk wear both GPS and VHF collars at different times during their monitoring, the total numbers of unique VHF and GPS-collared elk are not independent (Table 3). On average, individual elk are collared for a duration of 3.1 years. From VHF-collared elk, we have obtained an average of 20 (range: 9 - 55) VHF locations/elk/year. For the GPS-collared elk, we have collected an average of 5,003 locations/elk, and 627,296 GPS locations in total.

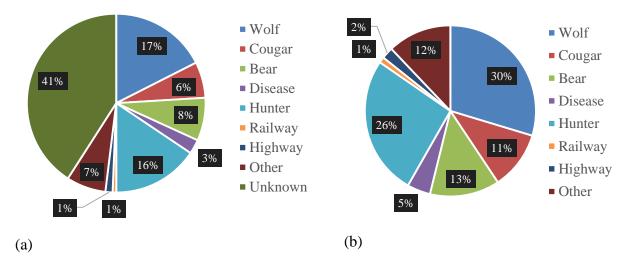
Beginning in January 2015, we monitored 49 VHF and 25 GPS (n = 74) collared resident and migrant elk on an almost daily basis to determine migratory status and survival (Fig. 4). In 2016, we are monitoring 30 VHF- and 46 GPS-collared elk. GPS collars record locations every 15 min during May and June, and every 2 hr during other months of the year (Fig. 4).

In 2015, we located western migrants and any missing elk throughout the summer with the help of Parks Canada employees. One elk (ID: OR13) was located on Mt. Nestor in the Spray

drainage. Three elk were located near Hector Lake, Bow Valley (IDs: OR17, OR78, YL104). One elk was located along Tyrrell Creek and the Clearwater River (ID: OR60). One elk was located along the Panther River (ID: OR89). A mortality signal was located and the collar retrieved for OR95 along the Dormer River. The following VITs were located: YL131 near Douglas Lake, OR51 east of Windy Cabin, OR65 in Dogrib Creek, OR56 and GR513 south of Cuthead Cabin.



**Fig. 4.** Monitoring newly-collared animals during the winter capture season. *Photo credit: Dr. Asa Fahlman* 


**Table 4.** Summary radio-telemetry table for VHF and GPS-collared elk from 2001 to 2016 in the Ya Ha Tinda elk herd, Alberta, Canada. The table shows total number of adult female elk collared/year, number and average number of VHF/GPS locations/individual elk, and total number of locations. Note that the total number of unique VHF and GPS-collared elk do not add up because some elk wear both kinds of collars, and because individual elk occur in multiple years (3 on average).

| Year    | # Elk<br>Collared | Total<br>VHF<br>Locs. | Total #<br>VHF-<br>collared | Mean<br>VHF<br>Locs./Elk | Total #<br>GPS-<br>collared | Total<br>GPS<br>Locs. | Mean<br>GPS<br>Locs./Elk |
|---------|-------------------|-----------------------|-----------------------------|--------------------------|-----------------------------|-----------------------|--------------------------|
| 2002    | 41                | 2,045                 | 37                          | 55                       | 4                           | 11,192                | 2,798                    |
| 2003    | 81                | 2,858                 | 73                          | 39                       | 8                           | 36,342                | 4,543                    |
| 2004    | 99                | 1,891                 | 74                          | 26                       | 25                          | 88,152                | 3,526                    |
| 2005    | 92                | 983                   | 81                          | 12                       | 11                          | 51,498                | 4,682                    |
| 2006    | 113               | 1,392                 | 99                          | 14                       | 14                          | 126,342               | 9,024                    |
| 2007    | 103               | 872                   | 94                          | 9                        | 9 9                         |                       | 9,658                    |
| 2008    | 81                | 1,027                 | 81                          | 13                       | 0                           | 0                     | 0                        |
| 2009    | 108               | 1,339                 | 101                         | 13                       | 7                           | 27,157                | 3,880                    |
| 2010    | 97                | 936                   | 91                          | 10                       | 6                           | 40,542                | 6,757                    |
| 2011    | 87                | 988                   | 81                          | 12                       | 6                           | 17,651                | 2,942                    |
| 2012    | 63                | 547                   | 60                          | 9                        | 3                           | 2,749                 | 916                      |
| 2013    | 77                | 1,673                 | 55                          | 30                       | 22                          | 138,745               | 6,307                    |
| 2014    | 77                | 1,267                 | 47                          | 27                       | 30                          | 212,780               | 7,093                    |
| 2015    | 74                | 419                   | 49                          | 9                        | 25                          | 178,770               | 7,151                    |
| 2016    | 76                |                       | 30                          |                          | 46                          |                       |                          |
| Average | 85                | 1,303                 | 70                          | 20                       | 14                          | 72,775                | 5,329                    |
| Totals  | 286               | 18,237                | 1,053                       |                          | 216                         | 1,018,846             |                          |

# **Elk Demography**

#### **Adult Mortality**

Since 1 January 2015, mortality signals from radio-collars were detected using ground and aerial telemetry, and were investigated from the ground or via helicopter as quickly as possible (in 2014, less than 24 hours for collared residents and eastern migrants, and less than 3-5 months for collared western migrants; Fig. 5).

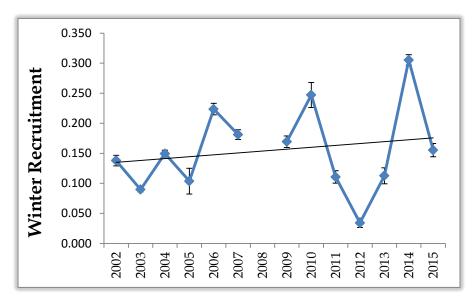


**Fig. 5.** Mortality causes for radio-collared adult female elk (n = 154) from 2002 - 15 March 2016 in the Ya Ha Tinda elk population, Alberta, Canada. (a) shows all mortalities, including unknowns (n = 154), and (b) shows only known-causes of mortality excluding unknowns (n = 91).

### Summer and Winter Calf:cow Ratios

For all observations of groups of collared, tagged, and/or un-collared elk, we recorded time, date, location, and the numbers of tagged elk in the herd, whenever possible. We followed the criteria of Smith and MacDonald (2002) to sex- and age-classify elk in groups to obtain demographic data. Although we attempted to classify yearling females in the field, this practice is not recommended except by very skilled observers at very close range, as body size of yearling females is variable and there is considerable risk of misclassification (Dean et al. 1976, Smith and MacDonald 2002). Therefore, we included classified yearling females in the adult female total. Observations were made from a distance to avoid disturbing the elk (on average 30-100 m from horseback, and 100-500 m from the ground or truck). Here, we examine trends in recruitment from 2001 – 2016 by examining the calf:cow ratio in late winter (1 Feb. – 30 Apr.; Table 5, Fig. 6), and the calf:cow ratio in summer (1 June – 31 Aug.; Table 6, Fig. 7) following Hebblewhite (2006, Appendix 1B) and Czaplewski et al. (1983) using the following:

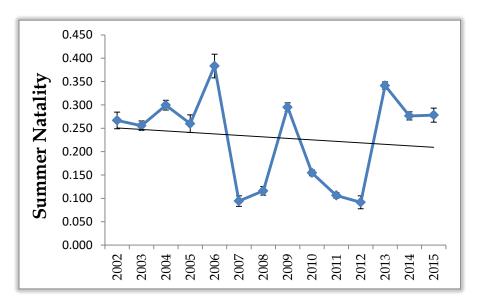
$$Y_{ij} = \frac{\sum_{i=1}^{n} calves_{i}}{\sum_{i=1}^{n} cows_{i}}$$
 Eq. 1


where i = 1 to n elk herds classified within season-year j, i.e., 2013 recruitment. We calculated the standard error in  $Y_{ij}$  assuming errors were binomially distributed following Czaplewski et al. (1983):

$$SE = \sqrt{\frac{Y_{ij}(1 - Y_{ij})}{k_{ij}}}$$
 Eq. 2.

where  $Y_{ij}$  is the calf:cow ratio for season-year j, and  $k_{ij} = \sum_{i=1}^{n} calves_i + \sum_{i=1}^{n} cows_i$ , namely, the total number of elk counted in any given season-year (Czaplewski et al. 1983).

**Table 5.** Cow:calf ratio data in late winter (1 Feb. to 30 Apr.), Ya Ha Tinda elk herd, Alberta, Canada. Adult female total includes female yearlings.


| Year    | Total #<br>Classified | # of<br>Groups | ADF<br>Total | YOY<br>Total | Cow:calf | SE    |
|---------|-----------------------|----------------|--------------|--------------|----------|-------|
| 2002    | 1942                  | 20             | 1362         | 188          | 0.138    | 0.009 |
| 2003    | 6296                  | 70             | 5490         | 493          | 0.090    | 0.004 |
| 2004    | 4381                  | 35             | 3563         | 533          | 0.150    | 0.006 |
| 2005    | 229                   | 10             | 183          | 19           | 0.104    | 0.021 |
| 2006    | 2144                  | 19             | 1552         | 347          | 0.224    | 0.010 |
| 2007    | 2316                  | 14             | 1909         | 346          | 0.181    | 0.008 |
| 2008    |                       |                |              |              |          |       |
| 2009    | 1568                  | 13             | 1310         | 222          | 0.169    | 0.010 |
| 2010    | 454                   | 6              | 348          | 86           | 0.247    | 0.021 |
| 2011    | 1035                  | 13             | 813          | 90           | 0.111    | 0.010 |
| 2012    | 545                   | 2              | 524          | 18           | 0.034    | 0.008 |
| 2013    | 568                   | 2              | 506          | 57           | 0.113    | 0.013 |
| 2014    | 2832                  | 14             | 2106         | 643          | 0.305    | 0.009 |
| 2015    | 1198                  | 9              | 914          | 142          | 0.155    | 0.011 |
| Average | 1962.154              | 17.462         | 1583.077     | 244.923      | 0.155    | 0.008 |



**Fig. 6.** Calf:cow ratio data in late winter (1 Feb. – 30 Apr.) from 2002 - 2015 for the Ya Ha Tinda elk herd, Alberta, Canada. Adult female total includes female yearlings.

**Table 6.** Cow:calf ratio data (1 June – 31 Aug.), Ya Ha Tinda elk herd, Alberta, Canada. Adult female total includes female yearlings.

| Year    | Total #<br>Classified | # of<br>Groups | ADF<br>Total | YOY<br>Total | Cow:calf | SE    |
|---------|-----------------------|----------------|--------------|--------------|----------|-------|
| 2002    | 662                   | 59             | 487          | 130          | 0.267    | 0.018 |
| 2003    | 1873                  | 109            | 1455         | 372          | 0.256    | 0.010 |
| 2004    | 2012                  | 105            | 1459         | 437          | 0.300    | 0.011 |
| 2005    | 598                   | 32             | 427          | 111          | 0.260    | 0.019 |
| 2006    | 394                   | 17             | 266          | 102          | 0.383    | 0.025 |
| 2007    | 736                   | 38             | 605          | 57           | 0.094    | 0.011 |
| 2008    | 1367                  | 55             | 1103         | 128          | 0.116    | 0.009 |
| 2009    | 2438                  | 71             | 1782         | 526          | 0.295    | 0.009 |
| 2010    | 3884                  | 322            | 2943         | 455          | 0.155    | 0.006 |
| 2011    | 2870                  | 306            | 2343         | 249          | 0.106    | 0.006 |
| 2012    | 443                   | 22             | 404          | 37           | 0.092    | 0.014 |
| 2013    | 3857                  | 91             | 2761         | 943          | 0.342    | 0.008 |
| 2014    | 3013                  | 137            | 2057         | 569          | 0.277    | 0.009 |
| 2015    | 996                   | 42             | 701          | 195          | 0.278    | 0.015 |
| Average | 1796                  | 100            | 1342         | 308          | 0.230    | 0.012 |



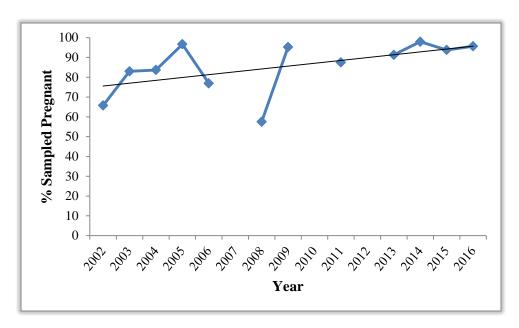
**Fig. 7.** Calf:cow ratio data in summer (1 June - 31 Aug.), Ya Ha Tinda elk herd, Alberta, Canada. Adult female total includes female yearlings.

**Table 7.** Average calf:cow ratios between 1 June and 31 August in the migratory segments of the Ya Ha Tinda elk herd, Alberta, Canada.

| Year | n  | Residents | n  | Eastern<br>Migrants | n | Western<br>Migrants |
|------|----|-----------|----|---------------------|---|---------------------|
| 2013 | 29 | 0.22      | 13 | 0.37                |   | $0.29^{a}$          |
| 2014 | 34 | 0.19      | 24 | 0.54                | 6 | 0.17                |
| 2015 | 27 | 0.22      | 8  | 0.23                |   |                     |

<sup>&</sup>lt;sup>a</sup> as reported by Parks Canada in November 2013

#### **Pregnancy Rates**


In February and March, 2015, 64 elk were rectally palpated; 4 elk were not pregnant. The pregnancy rate was 94% (Table 8, Fig. 8).

In February, 2016, 44 of 46 elk (96%) that were rectally palpated were pregnant. Pregnancy rates appear to have increased over the past decade (Fig. 8).



**Table 8.** Pregnancy rates in late winter across all years except 2007 and 2010 for the Ya Ha Tinda elk herd, Alberta, Canada.

| Cumada. |            |        |          |
|---------|------------|--------|----------|
| Year    | # Pregnant | Total  | <b>%</b> |
| 1 cai   | πTregnant  | Sample | Total    |
| 2002    | 23         | 35     | 0.657    |
| 2003    | 39         | 47     | 0.830    |
| 2004    | 41         | 49     | 0.837    |
| 2005    | 29         | 30     | 0.967    |
| 2006    | 20         | 26     | 0.769    |
| 2007    |            |        |          |
| 2008    | 23         | 40     | 0.575    |
| 2009    | 40         | 42     | 0.952    |
| 2010    |            |        |          |
| 2011    | 14         | 16     | 0.875    |
| 2012    |            |        |          |
| 2013    | 21         | 23     | 0.913    |
| 2014    | 47         | 48     | 0.979    |
| 2015    | 60         | 64     | 0.938    |
| 2016    | 44         | 46     | 0.957    |
| Total   | 401        | 466    | 0.819    |



**Fig. 8.** Pregnancy rates in late winter across all years except 2007 and 2010 for the Ya Ha Tinda elk herd, Alberta, Canada.

# **Migratory Behaviour**

# Classifying Migrants and Residents

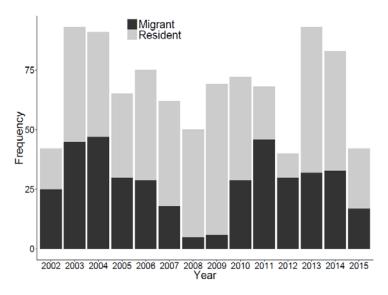
We classified individual behaviour as migrant or resident using the Net Squared Displacement (NSD) method (Bunnefeld et al. 2011, Borger and Fryxell 2012, Spitz 2015) combined with post-hoc spatial rules and visual confirmation in a GIS. NSD measures the cumulative squared displacement from the starting location. We fitted linear and non-linear movement models to NSD for each individual in each year (hereafter referred to as elk-years) for migrant, mixed migrant, resident, nomad and disperser behaviour (Bunnefeld et al. 2011, Spitz 2015). The best movement model was then selected using AIC<sub>c</sub>. Because there were no mixed migrants or nomads in our population these models were excluded from comparisons. Elk classified as dispersers were re-classified as migrants because in almost all cases the dispersal movement model was the best fitting because the elk either died or lost its collar during migration or while on its summer range. All model fitting was carried out using the R package MigrateR (Spitz 2015). GPS data was resampled to 1 location per day at random. For VHF data we attempted to use the NSD method but this was only successful for 222 VHF elk-years due to small sample sizs. Where possible the remaining VHF elk-years were classified visually using a GIS. Because of the misclassification of residents as migrants in cases of summer range expansion we used a post-hoc spatial constraint to ensure correct classification in these cases. For an individual to be considered resident it had to remain within 15 km of the winter range during summer. Some individuals also showed short duration 'exploratory movements' which we did not consider true migratory behaviour. To account for these cases we considered an individual to be migratory only if it had non-overlapping seasonal ranges for a minimum of 30 days.

**Table 9.** The total number of elk tracked using GPS collars in each year, with their classification as western, southern, northern, or eastern migrants or residents. Note that the total tracked does not necessarily match the total collared (Table 4) because not enough locations were recorded to determine migratory status for every animal. The total percentages of elk that were migrant or resident in each year are also shown.

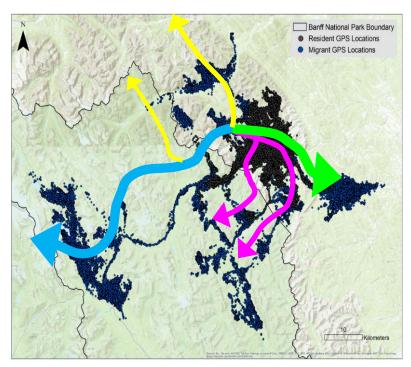
|       | Total   |      | Mig   |       | Migrant | Resident |          |      |
|-------|---------|------|-------|-------|---------|----------|----------|------|
| Year  | Tracked | West | South | North | East    | Resident | <b>%</b> | %    |
| 2002  | 3       | 2    | 0     | 0     | 0       | 1        | 66.7     | 33.3 |
| 2003  | 7       | 4    | 2     | 0     | 0       | 1        | 85.7     | 14.3 |
| 2004  | 16      | 3    | 3     | 5     | 0       | 5        | 68.8     | 31.2 |
| 2005  | 7       | 1    | 0     | 0     | 0       | 6        | 14.3     | 85.7 |
| 2006  | 9       | 2    | 0     | 2     | 0       | 5        | 44.4     | 55.6 |
| 2007  | 8       | 0    | 0     | 1     | 0       | 7        | 12.5     | 87.5 |
| 2008  | 0       | 0    | 0     | 0     | 0       | 0        | -        | -    |
| 2009  | 7       | 0    | 0     | 0     | 0       | 7        | 0        | 100  |
| 2010  | 7       | 0    | 0     | 0     | 1       | 6        | 14.3     | 85.7 |
| 2011  | 3       | 0    | 0     | 0     | 1       | 2        | 33.3     | 66.7 |
| 2012  | 0       | 0    | 0     | 0     | 0       | 0        | -        | -    |
| 2013  | 19      | 1    | 1     | 0     | 3       | 14       | 26.3     | 73.7 |
| 2014  | 28      | 4    | 0     | 0     | 7       | 17       | 39.3     | 60.7 |
| 2015  | 21      | 1    | 3     | 0     | 6       | 11       | 47.6     | 52.3 |
| Total | 135     | 18   | 9     | 8     | 18      | 82       | 39.3     | 60.7 |

**Table 10.** The total number of elk tracked using VHF collars in each year, with their classification as western, southern, northern, or eastern migrants or residents. Note that the total tracked does not necessarily match the total collared (Table 4) because not enough locations were recorded to determine migratory status for every animal. The total percentages of elk that were migrant or resident in each year are also shown.

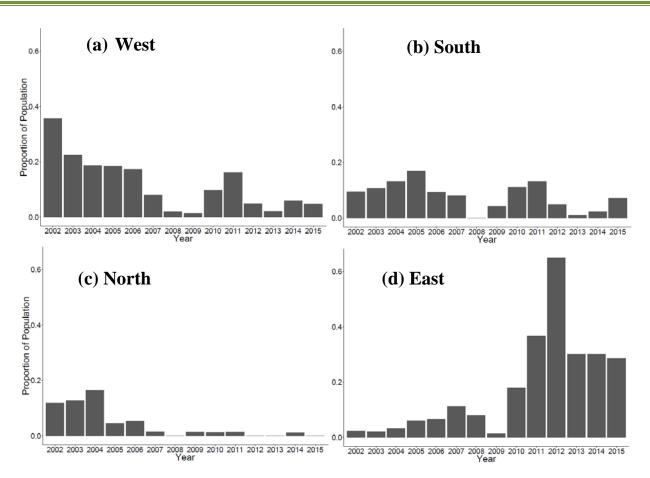
|       | Total   |      | Mig   | ratory Stat |      | Migrant  | Resident |      |
|-------|---------|------|-------|-------------|------|----------|----------|------|
| Year  | Tracked | West | South | North       | East | Resident | %        | %    |
| 2002  | 39      | 13   | 4     | 5           | 1    | 16       | 59.0     | 41.0 |
| 2003  | 86      | 17   | 8     | 12          | 2    | 47       | 45.3     | 54.7 |
| 2004  | 75      | 14   | 9     | 10          | 3    | 39       | 48.0     | 52.0 |
| 2005  | 58      | 11   | 11    | 3           | 4    | 29       | 50.0     | 50.0 |
| 2006  | 66      | 11   | 7     | 2           | 5    | 41       | 37.9     | 62.1 |
| 2007  | 54      | 5    | 5     | 0           | 7    | 37       | 31.5     | 68.5 |
| 2008  | 50      | 1    | 0     | 0           | 4    | 45       | 10.0     | 90.0 |
| 2009  | 62      | 1    | 3     | 1           | 1    | 56       | 9.7      | 90.3 |
| 2010  | 65      | 7    | 8     | 1           | 12   | 37       | 43.1     | 56.9 |
| 2011  | 65      | 11   | 9     | 1           | 24   | 20       | 69.2     | 30.8 |
| 2012  | 40      | 2    | 2     | 0           | 26   | 10       | 75.0     | 25.0 |
| 2013  | 74      | 1    | 0     | 0           | 26   | 47       | 36.5     | 63.5 |
| 2014  | 55      | 1    | 2     | 1           | 18   | 33       | 40.0     | 60.0 |
| 2015  | 21      | 1    | 0     | 0           | 6    | 14       | 33.3     | 66.7 |
| Total | 810     | 96   | 68    | 36          | 139  | 471      | 41.9     | 58.1 |


There were 945 elk-years of data from 312 individuals which were successfully classified as migrant or resident, with 135 of those from GPS-collared animals and 810 from VHF-collared animals. There was considerable variance between years but overall we classified a mean of 41.5% (n = 392) of elk as migrants and 58.5% of animals as residents (n = 553, Fig. 9). During the period 2006-2010 the marked elk sample was biased towards residents for the aversive conditioning studies at this time. In 2015 we classified 40.5% (n = 42) of tracked elk as migrants, a similar proportion to the previous 2 years (Tables 9, 10).

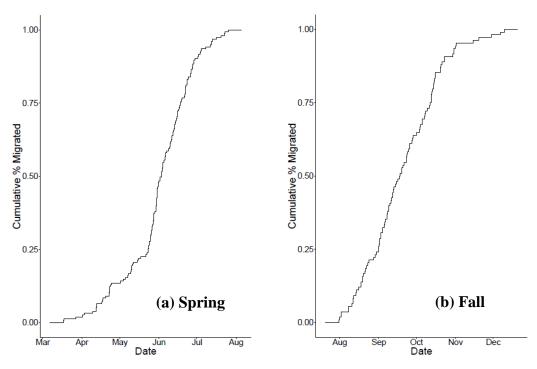
#### Migratory Routes


From the movements of the 392 elk-years of migratory behaviour we defined four major migration routes (Fig. 10). Elk using the first route travel up to 64 km west of the Ya Ha Tinda ranch, moving along the Red Deer River drainage into Banff National Park in the direction of Lake Louise. Elk using the second route travel up to 47 km south-west of the ranch, moving along either the Panther or Dormer River drainages. The third route is to the north, with elk travelling up to 36 km towards the Clearwater River, some directly north and others first travelling west and then turning to the north. Finally elk using the fourth route travel up to 24 km east onto industrial forest lands (see Killeen et al. 2016 for additional details). The proportion of elk using the western and northern migrations has declined from 2002-2015 while the proportion migrating east has increased (Fig. 11). In 2015 only 5% of the tracked elk migrated west, 7% migrated south and 29% migrated east with none migrating north.

# Timing of Migration


We estimated the timing of migration using the fitted NSD migration models in which the midpoint of spring migration is a term included in the model and the midpoint of return migration is a derived parameter (Spitz et al. 2015). Sample size was greater in spring due to mortality or loss of collars before return migration. In spring 50% of elk had migrated by 03-June and 95% had migrated by 11-July while in fall 50% of elk had migrated by 17-September and 95% of elk had migrated by 01-November (Fig. 12).



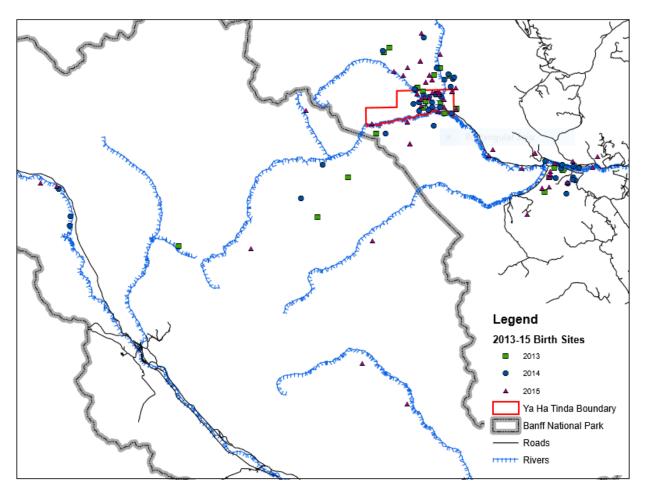

**Fig. 9.** The numbers of elk classified as migrant or resident in each year, including both GPS-collared and VHF-collared individuals.



**Fig. 10.** Locations of all GPS-collared elk are shown (migrants – grey dots, residents – blue dots) with the 4 major migration routes used by GPS and VHF collared elk denoted by arrows. Of 944 tracked elk-years there were 392 GPS-and VHF-collared elk which migrated, with 12% of the total collared population migrating west via the blue route, 5% the north via the yellow routes, 8% south via the pink routes, and 17% east via the green route. There were also 553 residents (59% of total tracked).



**Fig. 11.** The proportion of the total elk population using each of the 4 major migratory routes from 2002 to 2015. The routes of the migratory segments are shown in Fig. 10.




**Fig. 12.** The timing of migration for all routes combined in spring (N = 155) and fall (N = 108) calculated from the NSD migration models.

# **SECTION II: Calf Captures and Monitoring**

# **Calving Areas**

In 2015, of the adult female elk that wintered on the Ya Ha Tinda, 60 had vaginal implant transmitters (VITs). Based on VITs and/or location of neonatal elk calves (n = 54), 14% of cows gave birth in Banff National Park, 23% of cows gave birth to the north of the ranch mostly in the Bighorn Creek cut blocks and along Scalp Creek, 27% of cows gave birth to the east of YHT, 32% of cows gave birth in the vicinity of the ranch, and 4% gave birth to the south of the ranch (Fig. 13, Appendix I-4).



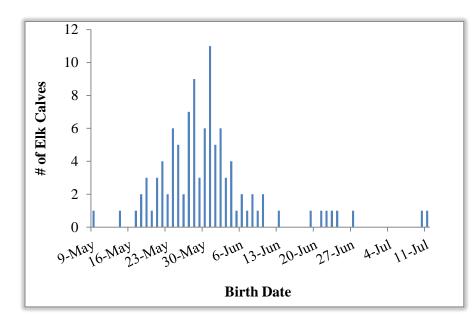
**Fig. 13.** Birth sites of 113 elk calves located through use of vaginal implant transmitters (VITs) and/or neonatal elk calves, Alberta, Canada, in 2013 - 2015.

# **Calf Capture Effort 2015**

In May and June, 2015, 34 elk calves (22 residents, 12 eastern migrants) calves were captured from the ground and subsequently ear-tagged. We were unable to capture 27 calves from cows with VITs that either were dead before the calving season, or had migrated large distances right

before giving birth, or into BNP (Appendix I-4). Teams of 2 monitored the VITs on a daily basis, several times per day; when a VIT was expelled, the team attempted to locate and capture the calf (n = 32). Calves were also captured on an opportunistic basis (n = 2; Appendix II-1). Most of the calves were captured within 300 m of the location of the VIT representing the birth site.

Once a calf was captured, measurements and weight were taken (Appendix II-2 & 3; Fig. 14), which aid in estimating age as well as determining factors which affect calf survival. Calves were equipped with VHF radio transmitting ear tags to allow for regular relocation and monitoring, and to locate calves when the signal indicates they have remained unmoved for > 4 hours. Calves were released within  $10 \pm 3$  minutes of capture.




**Fig. 14.** Hair samples were collected and measurements taken on calves captured in May and June, 2015, in the Ya Ha Tinda elk herd, Alberta, Canada. *Photo credits: Celie Intering* 

# **Calving**

The median date of birth for calves born in 2013 - 2015 (n = 103) was 30 May (range = 9 May – 11 July; Fig. 15). Because the calves were captured at various ages, we used the rates of gain determined by linear regression for maternally nursed elk calves described by Robbins et al. (1981) to correct birth weight. We multiplied the average rate of gain (0.8 kg/day) by the age in days of each calf and subtracted this from weight at capture to calculate the mean weight at birth. The overall mean weight at birth in 2013 - 2015 was  $17.7 \pm 2.1$  kg (n = 76; Fig. 16).

The median birth date for calves in the Ya Ha Tinda herd is after that of elk calves captured in Yellowstone, where the median birth date was also 28 May (Barber-Meyer, Mech, and White 2008). This date appears slightly earlier than the birth date reported by a study in Pennsylvania, in which 52% of all documented births of elk occurred in the first week of June (DeVivo et al. 2011), and the peak birth date of 1 June reported by Johnson (1951) in Montana, but well within the realm of variation among the 12 neonatal elk calf studies in the western US reported by Griffin et al. (2011).



**Fig. 15.** Birth dates for calves born (n = 103) in the Ya Ha Tinda elk herd, Alberta, Canada, 2013 - 2015. Known birth dates ranged from 9 May to 11 July.

Elk calves in the Ya Ha Tinda herd appeared to weigh slightly more at birth than elk calves captured by Barber-Meyer, Mech, and White (2008; 14-15 kg), but weights appeared similar to those of male calves captured by DeVivo et al. (2011; 16.6 kg; females averaged 13.7 kg).

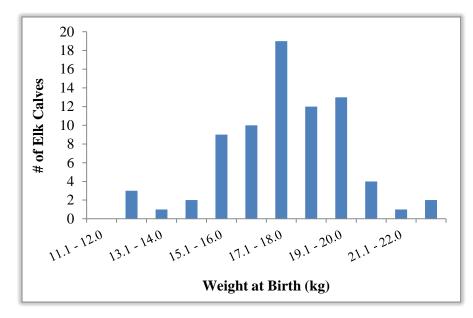
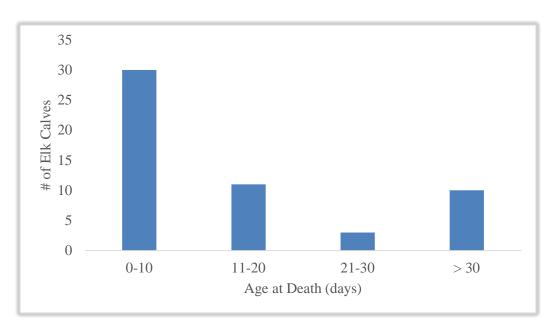


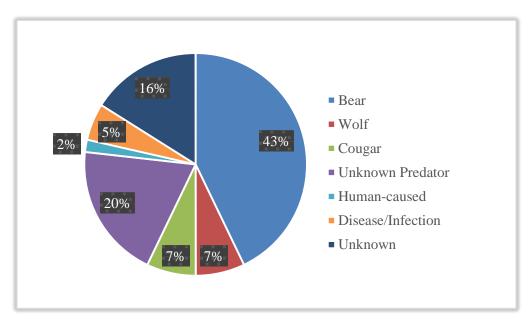

Fig. 16. Weights at birth for calves captured (n = 76) in the Ya Ha Tinda elk herd, Alberta, Canada, in 2013 -2015. We used the estimated daily growth rate of the calves to backcalculate weight at birth from weight at capture.

# **Post-capture Monitoring and Survival**

All animals were closely monitored (2-5x daily) from a distance with telemetry in the 1-2 days following capture to check for capture-related injuries or complications. Thereafter, calves were monitored from a distance at least once daily throughout summer and fall. In winter, calves were monitored less frequently (2-5x weekly).


Mortality signals were investigated as soon as possible after the signal was detected, usually within 24 hr from the time of death (Fig. 17). Most calves died within the first 10 days of life (Fig. 18). Investigators thoroughly searched mortality sites for evidence from predators or other causes of death, such as disease or weather. In 2013 - 2016, of known causes of death, bears were responsible for the majority (Fig. 19, Appendix II-4).

Of the 34 calves captured and tagged in 2015, 14 were still surviving as of 15 March 2016 (Appendix II-4). Five of these calves belonged to resident cows, while 9 were born to eastern migrants. It is likely that 1 additional calf is still alive, but its tag was ripped out and found on the ground with no evidence of carcass or predation.






**Fig. 17.** Calf mortalities in the Ya Ha Tinda elk herd, Alberta, Canada, in 2013 - 2016 were investigated as quickly as possible to determine cause of death based on sign from predators, disease, or weather. *Photo credits: Laura Burns* 



**Fig. 18.** Age at death of elk calves (n = 54) in the Ya Ha Tinda elk herd, Alberta, Canada, in 2013 - 2016.



**Fig. 19.** Causes of death of elk calves (n = 56) in the Ya Ha Tinda elk herd, Alberta, Canada, in 2013 - 2016. Note that chart ignores differences in timing of the different causes of mortality (i.e., predation by bears tends to occur earlier in the neonatal period compared to that of other predators).

#### **Birth Site Characteristics**

To determine whether birth site selection is most influenced by local vegetative features or broad-scale predation risk, we located birth sites through use of vaginal implant transmitters or neonatal calves. After the cows and calves left the capture area, birth and bed sites, and 1 random site for each, were visited in June 2015 and characteristics (location, slope, elevation, canopy cover, tree density, vegetation, and hiding cover) were measured (Fig. 20). Canopy cover was estimated with a densiometer. Tree density and shrubby vegetation were counted in a belt transect measuring 30 x 4 m, placed in a random direction and centered on the sites. We measured the amount of horizontal cover (i.e., hiding cover for calves) at the sites using cover board estimates taken from each of the four cardinal directions from distances of 10 and 30 m, and taken from both kneeling and standing positions to approximate predator eye height (Panzacchi et al. 2010). We expect to characterize selection of calf birth and bed sites between migrants and residents, and between cows with calves which have survived and cows with calves which have not survived, in relation to predation risk of the general calving area and vegetation at the birth or bed site and their interaction.

Preliminary analysis of birth sites vs. random sites for the different characteristics (slope, elevation, canopy cover, tree density, vegetation, and hiding cover) indicate no significant difference (Kruskal-Wallis:  $\chi^2 = 38.40$ , p > 0.05) between the sites. When conducting *a posteriori* pairwise comparison of birth sites amongst migratory strategies using Wilcoxon rank sum test, elevation was significantly lower east of YHT than on any other calving ground (p < 0.01). Birth sites north or west of YHT were significantly higher compared to the ranch (p < 0.01). There was a slight difference in hiding cover at 30 m among migratory strategy ( $\chi^2 = 9.73$ , p = 0.05). We expect that our current sample sizes are low for detecting significant difference amongst the migratory strategies and for the different characteristics.



**Fig. 20.** Birth and bed sites, and 1 random site for each, of calves captured in the Ya Ha Tinda elk herd, Alberta, Canada, were visited in 2013 - 2015 and canopy cover, slope, elevation, calf hiding cover, and shrubby vegetation, and tree density were measured. *Photo credits: Jodi Berg and Marion Calandra* 

# **SECTION III: Carnivore Scat Surveys**

Recognition that large predators play a key role in trophic dynamics of ecosystems has led to a greater emphasis in their conservation and management across North America (Estes et al. 2011). Increasingly, research is showing that not only the direct killing, but also the risk of predation has considerable impact on prey species as they navigate a "landscape of fear" (Laundré et al 2001, Tolon et al. 2009). In particular, predation risk from large carnivores has been shown to shape ungulate habitat selection, grouping dynamics, and anti-predator behaviours (Gustine et al. 2006, Vanak et al. 2013, Robinson and Merrill 2013).

Studies of the Ya Ha Tinda elk herd in the eastern slopes of the central Rocky Mountains of Alberta have shown that elk respond to predation risk and predators may be having widespread effects on the prey community that range from overall population decline to losses in migratory behaviour. Elk migrating into Banff National Park have been found to have access to higher-quality forage but are also exposed to high wolf-caused mortality (Hebblewhite and Merrill 2011). However, wolves (*Canis lupus*) are only one of the major predators on elk and elk calves in summer so we expanded our studies to address the community of predators in this area, including black bears (*Ursus americanus*), grizzly bears (*Ursus arctos*), cougars (*Puma concolor*), lynx (*Lynx canadensis*), and coyotes (*Canis latrans*) in and around the Ya Tinda Ranch (Fig. 21).

Building on pilot work conducted by Jodi Berg in 2013, we used specially trained scat dogs in the summers of 2014-2015 to locate predator scats in and adjacent to the Ya Ha Tinda. The scat contents will be analyzed as part of a new MSc thesis project and are not presented in this report. Data described in this report will be used to meet the following research objectives as part of Eric Spilker's MSc thesis.

# **Study Objectives**

- 1) Sample the scat of large carnivores including black bears, grizzly bears, wolves, coyotes, cougars, and lynx in the study area.
- 2) Use scat locations to model individual species resource selection functions (RSF) of each carnivore species based on landscape features and the presence of other predator's scats as a surrogate for predation risk to ungulates.
- 3) Adjust relative abundance estimates for each grid cell with observations of each species collected by remote trail cameras within the same sampling grid cell (Steenweg et al. 2013).
- 4) Use the predictions of the species-specific RSFs to assess the evidence for the spatial segregation of carnivores.
- 5) Build separate RSF models of locations of species-specific kill sites of adult elk (2002-2016) and calf elk (2013-2016) using final predator RSF models as predictor variables for determining risk to elk.

In this report we present preliminary summaries of sampling scat (#/km) across the study area. Further analyses will be presented as the completion of an MSc thesis in December 2016.



**Fig. 21.** Dog/handler team surveying scats at high elevation at the Ya Ha Tinda, AB. *Photo credit: Eric Spilker*.

#### **Methods**

Four dog handlers and 4 dogs (Shrek, Chester, Sampson, Rounder) were used for scat surveys. Three of the dogs (Shrek, Chester, Sampson) were trained at Conservation Canines, an established detection dog training facility at the Center for Conservation Biology at the University of Washington, and the other (Rounder) was trained under guidance by Conservation Canines. The detection dogs were trained following similar procedures used to train drug and explosive detection dogs (Fig. 22). Three of the dogs were handled only by their individual handlers and one dog (Shrek) was handled by 2 different handlers in different years.

*Scat Surveys.* After conducting a pilot study in 2013, we used a 5 x 5-km grid-based sampling design and surveyed 48 cells from 2 July to 12 September 2014 and from 7 July to 15 September 2015 with different routes within each cell surveyed between years. In 2015, we also surveyed an additional nine 5 x 5-km cells that covered the northern portion of the proposed Panther-Dormer drainages of the core area for bison reintroduction. Dog handlers and their dogs walked transects

that covered different habitat types in individual cells as determined by examining imagery. Due to difficult satellite topography, actual survey routes often differed from the mapped survey routes because the handler/dog was restricted to what was possible to cover on foot. Handlers would rest dogs frequently so as to avoid over-exerting the dog and thus compromising the dog's scenting ability. We did not survey under very hot conditions (>25°C), high winds, or heavy precipitation because these conditions have been shown to significantly reduce a dog's scenting ability (Reed et al. 2011).

When a scat was detected, a GPS location was recorded. Scats were then visibly ranked to provide a general timeline of



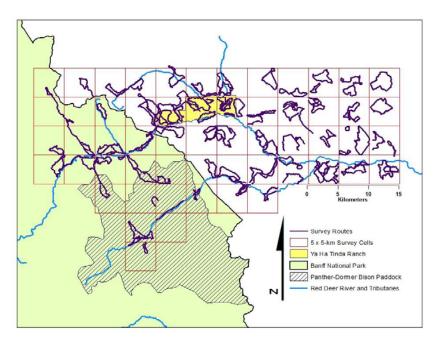
**Fig. 22.** Detection dog training at Conservation Canines, University of Washington. One of the six jars on the apparatus contains a coyote scat. The dog must correctly indicate which jar it is in. *Photo credit: Eric Spilker*.

when defecation occurred. Ranks included 'Fresh', 'Semi-old', 'Old', and 'Very-old' based on moisture level, colour, weathering of fecal material, and presence of mold. 'Fresh' scats were those that appeared that the mucous that covers the scat was still visible. 'Very-old' scats were those that most, if not all of the fecal material was gone and the remaining solid material was considerably degraded (adapted from Wasser et al. 2004). Dogs often would alert on weathered, unidentifiable and often unrecoverable scats (Fig. 23), which we ignored because we considered these to have been deposited previous to our sampling timeframe of interest. We assumed such scats were encountered evenly across the study area and did not bias our sampling.



**Fig. 23.** Example of scat fragments that detection dogs would alert on that were not collected as data points. This example shows a fragment that would be large in the range of unconsidered scats: dogs would also alert on several remnant hairs or discoloured substrate. *Photo credit: Eric Spilker* 

Dog handlers recorded the suspected species of the scat based on the physical appearance. In particular, we used the scat diameter measurement ranges and physical descriptions of Elbroch (2003), Weaver and Fritts (1979), and Rezendes (1992) for identification guidelines (Appendix III-1). To verify scat identification, we swabbed a subset of the scats for DNA using latex gloves and non-finished toothpicks following protocols recommended by Wildlife Genetics International (Leanne Harris, pers. comm.). The toothpick was used to gently scrape the clear mucous off fresh scats and dried mucus from semi-old and old scats from the outside of the scat while avoiding collecting fecal material. Due to the low amplification success rate of scats that are not fresh (Piggott 2005), only samples that appeared to have mucus present that would yield DNA were sampled (n=272). The toothpicks were then placed in breathable coin envelopes and stored at room temperature to aid in desiccation necessary for preserving the DNA structure (Waits and Paetkau 2005).

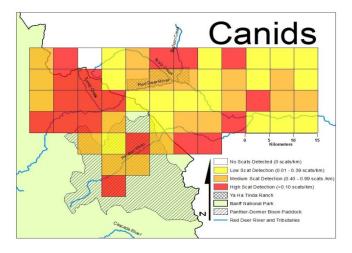

DNA will be analyzed using the Qlagen QlaAmp Mini Stool Kit (Qiagen Inc., Valencia, CA) to extract DNA. Once extracted, the 16S ribosomal ribonucleic acid (rRNA) mitochondrial gene (Johnson & O'Brien 1997) will be analysed and compared with existing known samples for species identification. DNA samples have been sent to Wildlife Genetics International (Nelson, BC) for analysis.

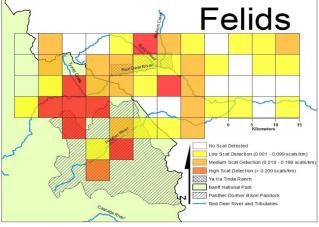
#### **Results**

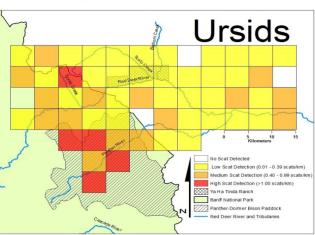
Scat Surveys. During the summers of 2014 and 2015, we surveyed 1057-km ( $18.5 \pm 9.0$  mean  $\pm$  SD, range 2.1 - 26.2 km/cell across both years) and recorded data on a total of 1259 scats (Fig. 24, Appendix I-2). The carnivore family group with the highest number of scats that we detected were canids (62%), followed by ursids (30%) and the fewest scats detected were felids (8%). Our

measure of relative abundance category by study cell reflected this with canids having the greatest number of study cells with a "high detection" ranking and the fewest cells with a "no scats detected" ranking.

Maps of Raw Scat Counts. As a preliminary exploration of the data, we plotted the average relative abundance of scats (#/km) across the 2 years within 5 x 5-km cell by species (Fig. 25). We used all data, which assumed we identified species correctly; adjustments to our results will be made once the DNA analysis is completed. Classes of relative abundance for each species were determined by examining the frequency histogram of scats for each species. Because we found a higher number of scats/cell for ursids and canids, we used relative abundance categories of (1) no scat detected, (2) low scat detection: 0.01 - 0.39 scats/km, (3) medium scat detection: 0.40 - 0.99 scats/km and (4) high scat detection: >1.00 scats/km for canids and ursids; and, (1) no scat detected, (2) low scat detection: 0.001 - 0.099 scats/km, (3) medium scat detection: 0.010 - 0.199 scats/km and (4) high scat detection: >0.200 scats/km for felids.





**Fig. 24.** Grid-based sampling design composed of 5 x 5-km cells and routes used to survey for scat of large carnivores in 2014 and 2015, Alberta, Canada.


# **On-going Analyses**

- Revise scat species identification as per DNA analyses results.
- Use scat locations to model individual species resource selection functions (RSF) of each carnivore species based on landscape features and the presence of other predator's scats as a surrogate for predation risk to ungulates.
- Adjust relative abundance estimates for each grid cell with observations of each species collected by remote trail cameras within the same sampling grid cell (Steenweg et al. 2013).

- Assess mapped predictions of the final wolf, grizzly, and cougar RSF models with existing RSF models from other studies made with GPS and telemetry data collected in the same/nearby areas.
- Use the predictions of the species-specific RSFs to assess the evidence for the spatial segregation of carnivores.
- Build separate RSF models of species-specific kill sites of adult elk (2002-2016) and calf elk (2013-2016) using final predator RSF models as predictor variables for determining risk to elk.







**Fig. 25.** Relative abundance of scats (#/km) detected by scat dogs along transects in each cell in 2014 and 2015.

#### REFERENCES

- Barber-Meyer, S.M., Mech, L.D., and P.J. White. 2008. Elk calf survival and mortality following wolf restoration to Yellowstone National Park. Wildlife Monographs 169(1): 1-30.
- Berg, J.E., Intering, C., Spilker, E., Hebblewhite, M., and E. Merrill. 2014. Persistence of the Ya Ha Tinda elk population: Long-term monitoring and calf survival. 2014 Draft Progress Report. University of Alberta, Edmonton, AB, Canada.
- Borger, L., and J.M. Fryxell. 2012. Quantifying individual differences in dispersal using net squared displacement. in M.B.J. Clobert, T. Benton & J. Bullock, editors. Dispersal and Spatial Evolutionary Ecology. Oxford University Press, Oxford, UK.
- Bunnefeld, N., Borger, L., van Moorter, B., Rolandsen, C.M., Dettki, H., Solberg, E.J., and G. Ericsson. 2011. A model-driven approach to quantify migration patterns: individual, regional and yearly differences. Journal of Animal Ecology 80(2): 466-476.
- Czaplewski, R.L., Crowe, D.M., and L.L. McDonald. 1983. Sample sizes and confidence intervals for wildlife population ratios. Wildlife Society Bulletin 11: 121-127.
- Dean, R. E., Thorne, E. T., and I.J. Yorgason. 1976. Weights of rocky mountain elk. Journal of Mammalogy 57(1): 186-189.
- DeVivo, M.T., Cottrell, W.O., DeBerti, J.M., Duchamp, J.E., Heffernan, L.M., Kougher, J.D., and J.L. Larkin. 2011. Survival and cause-specific mortality of elk *Cervus canadensis* calves in a predator rich environment. Wildlife Biology 17(2): 156-165.
- Elbroch, M. 2003. Mammal tracks & sign: A guide to North American species. Stackpole Books.
- Estes, J. A., Terborgh, J., Brashares, J.S., Power, M.E., Berger, J., Bond, W.J., and D.A. Wardle. 2011. Trophic downgrading of planet Earth. Science 333(6040): 301-306.
- Glines, L., Bohm, A., Spaedtke, H., Merrill, E., Eggeman, S., Deedy, A., and M. Hebblewhite. 2011. Ya Ha Tinda elk herd and Red Deer River Valley ecotone study: Final report. University of Alberta, Edmonton, AB, Canada.
- Griffin, K.A., et al. 2011. Neonatal mortality of elk driven by climate, predator phenology, and predator community composition. Journal of Animal Ecology 80(6): 1246-1257.
- Gustine, D.D., Parker, K.L., Lay, R.J., Gillingham, M.P., and D.C. Heard. 2006. Calf survival of Woodland Caribou in a multi-predator ecosystem. Wildlife Monographs 165: 1-32.
- Hebblewhite, M., and E.H. Merrill. 2011. Demographic balancing of migrant and resident elk in a partially migratory population through forage–predation tradeoffs. Oikos 120(12): 1860-1870.
- Hebblewhite, M., Merrill, E.H., Morgantini, L.E., White, C.A., Allen, J.R., Bruns, E., Thurston, L., and T.E. Hurd. 2006. Is the migratory behavior of montane elk herds in peril? The case of Alberta's Ya Ha Tinda elk herd. Wildlife Society Bulletin 34: 1280-1295.
- Johnson, W.E., and S.J. O'Brien. 1997. Phylogenetic reconstruction of the Felidae using 16S rRNA and NADH-5 mitochondrial genes. Journal of Molecular Evolution 44: S98-S116.
- Killeen, J., Merrill E., Bohm, H., Eggeman, S., Berg, J., and M. Hebblewhite. 2016. Migration patterns of the Ya Ha Tinda elk herd, 2002-2014. Final report. Contract No. 5P421-15-0423. University of Alberta, Edmonton, AB. 20 pp.
- Laundré, J.W., Hernández, L., and K.B. Altendorf. 2001. Wolves, elk, and bison: Re-establishing the 'landscape of fear' in Yellowstone National Park, USA. Canadian Journal of Zoology 79(8): 1401-1409.
- McInenly, L.E. 2003. Seasonal effects of defoliation on montane rough fescue (*Festuca campestris* Rydb.). University of Alberta, Edmonton, Alberta, Canada

- Murie O.J., and M. Elbroch. 2005. Animal tracks. Peterson Field Guide Series. Third edition. Houghton Mifflin Company, New York, NY, USA.
- Piggott, M.P. 2005. Effect of sample age and season of collection on the reliability of microsatellite genotyping of faecal DNA. Wildlife Research 31(5): 485-493.
- Rezendes, P. 1992. Tracking and the art of seeing. Camden House Publishing, Inc. Charlotte, VT, USA.
- Robbins, C.T., Podbielancik-Norman, R.S., Wilson, D.L., and E.D. Mould. 1981. Growth and nutrient consumption of elk calves compared to other ungulate species. Journal of Wildlife Management 172-186.
- Robinson, B.G., and E.H. Merrill. 2013. Foraging-vigilance trade-offs in a partially migratory population: Comparing migrants and residents on a sympatric range. Animal Behaviour 85: 849-856.
- Smith, B.L., and T. McDonald. 2002. Criteria to improve age classification of antlerless elk. Wildlife Society Bulletin 30: 200-207.
- Spaedtke, H.R. 2009. Aversive conditioning on horseback: A management alternative for grassland systems threatened by sedentary elk populations. University of Alberta, Edmonton, AB, Canada.
- Spitz, D. 2015. Chapter 2. "migrateR": Extending non-linear modeling methods for quantifying migratory movement behavior. University of Montana, Missoula, MT.
- Steenweg, R., Whittington, J., and M. Hebblewhite. 2012. Canadian Rockies carnivore monitoring project: Examining trends in carnivore populations and their prey using remote cameras. Year 1 Progress Report, 2011-2012. University of Montana. 36p. Available at: http://www.cfc.umt.edu/Heblab/ParksCamera.html.
- Tolon, V., Dray, S., Loison, A., Zeileis, A., Fischer, C., and E. Baubet. 2009. Responding to spatial and temporal variations in predation risk: Space use of a game species in a changing landscape of fear. Canadian Journal of Zoology 87(12): 1129-1137.
- Vanak, A.T., Fortin, D., and M. Thaker. 2013. Moving to stay in place: Behavioral mechanisms for coexistence of African large carnivores. Ecology 94: 2619-2631.
- Waits, L.P., and D. Paetkau. 2005. Noninvasive genetic sampling tools for wildlife biologists: A review of applications and recommendations for accurate data collection. Journal of Wildlife Management 69(4): 1419-1433.
- Weaver, J.L., and S.H. Fritts. 1979. Comparison of coyote and wolf scat diameters. Journal of Wildlife Management 43(3): 786-788

0 0

**Appendix I-1.** 2013 - 2016 YHT winter elk capture information.

| Date        | Animal ID | Method      | Blood | Hair | Tooth | Preg Check | Pregnant | VIT | Collar                         |
|-------------|-----------|-------------|-------|------|-------|------------|----------|-----|--------------------------------|
| 17/Feb/2013 | OR76      | Ground Dart | Yes   | Yes  | Yes   | Yes        | No       | No  | VHF                            |
| 18/Feb/2013 | OR77      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 3300                 |
| 17/Feb/2013 | OR78      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 4400                 |
| 18/Feb/2013 | OR79      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 3300                 |
| 18/Feb/2013 | OR80      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 4400                 |
| 18/Feb/2013 | OR81      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 4400                 |
| 19/Feb/2013 | OR82      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 3300                 |
| 2/Mar/2013  | OR83      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 4400                 |
| 2/Mar/2013  | OR84      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 4400                 |
| 4/Mar/2013  | OR85      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 4400                 |
| 4/Mar/2013  | OR86      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Mortality; see incident report |
| 4/Mar/2013  | OR87      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | ATS GPS                        |
| 5/Mar/2013  | OR88      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 4400                 |
| 5/Mar/2013  | OR89      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 4400                 |
| 5/Mar/2013  | OR90      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | ATS GPS                        |
| 5/Mar/2013  | OR91      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | VHF                            |
| 6/Mar/2013  | OR92      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 7000                 |
| 7/Mar/2013  | OR93      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 7000                 |
| 7/Mar/2013  | OR94      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 7000                 |
| 8/Mar/2013  | OR95      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | VHF                            |
| 8/Mar/2013  | OR96      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | VHF                            |
| 22/Mar/2013 | OR41      | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 4400                 |
| 22/Mar/2013 | OR97      | Ground Dart | Yes   | Yes  | Yes   | Yes        | No       | No  | Lotek Lifecycle satellite      |
| 22/Mar/2013 | OR98      | Ground Dart | Yes   | Yes  | Yes   | No         | No       | No  | Lotek Lifecycle satellite      |
| 22/Mar/2013 | OR99      | Ground Dart | Yes   | Yes  | Yes   | No         | No       | No  | Lotek Lifecycle prototype      |
| 23/Mar/2013 | OR100     | Ground Dart | Yes   | Yes  | Yes   | No         | No       | No  | Lotek Lifecycle prototype      |
| 22/Feb/2014 | OR34      | Ground Dart | Yes   | No   | No    | Yes        | Yes      | Yes | Lotek GPS 4400                 |
| 24/Feb/2014 | OR98      | Ground Dart | Yes   | No   | No    | Yes        | Yes      | Yes | Lotek GPS 4400                 |

| Date        | Animal ID     | Method      | Blood | Hair | Tooth | Preg Check | Pregnant | VIT | Collar               |
|-------------|---------------|-------------|-------|------|-------|------------|----------|-----|----------------------|
| 25/Feb/2014 | OR39          | Ground Dart | Yes   | No   | No    | Yes        | Yes      | Yes | Lotek GPS 4400       |
| 26/Feb/2014 | OR31          | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | VHF                  |
| 26/Feb/2014 | OR40          | Ground Dart | Yes   | No   | No    | Yes        | Yes      | Yes | Lotek GPS 4400       |
| 27/Feb/2014 | BL274         | Ground Dart | Yes   | No   | No    | Yes        | Yes      | Yes | Lotek GPS 4400       |
| 27/Feb/2014 | OR23          | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 4400       |
| 3/Mar/2014  | YL100         | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 4400       |
| 3/Mar/2014  | BL245         | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | VHF                  |
| 3/Mar/2014  | OR12          | Ground Dart | Yes   | Yes  | Yes   | Yes        | No       | No  | Lotek GPS 4400       |
| 4/Mar/2014  | YL101         | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 4400       |
| 4/Mar/2014  | OR15          | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | Lotek GPS 7000       |
| 4/Mar/2014  | OR07          | Ground Dart | Yes   | No   | No    | Yes        | Yes      | Yes | Lotek GPS 4400       |
| 5/Mar/2014  | YL102         | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | VHF                  |
| 5/Mar/2014  | OR77          | Ground Dart | Yes   | No   | No    | Yes        | Yes      | Yes | Lotek GPS 3300       |
| 5/Mar/2014  | BL295         | Ground Dart | Yes   | No   | No    | Yes        | Yes      | Yes | Lotek GPS 4400       |
| 5/Mar/2014  | OR96          | Ground Dart | Yes   | No   | No    | Yes        | Yes      | Yes | VHF                  |
| 6/Mar/2014  | YL103 (GR183) | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | VHF                  |
| 6/Mar/2014  | OR35          | Ground Dart | Yes   | No   | No    | Yes        | Yes      | Yes | Lotek GPS 4400       |
| 6/Mar/2014  | BL284         | Ground Dart | Yes   | No   | No    | Yes        | Yes      | Yes | Lotek GPS 4400       |
| 7/Mar/2014  | BL259         | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | VHF                  |
| 7/Mar/2014  | YL104         | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | VHF                  |
| 10/Mar/2014 | OR32          | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | VHF                  |
| 11/Mar/2014 | YL105         | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | VHF                  |
| 11/Mar/2014 | OR24          | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | VHF                  |
| 12/Mar/2014 | OR37          | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | Lotek GPS 4400 ARGOS |
| 12/Mar/2014 | OR06          | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | Lotek GPS 4400 ARGOS |
| 13/Mar/2014 | YL107         | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 4400 ARGOS |
| 13/Mar/2014 | YL106         | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 4400 ARGOS |
| 14/Mar/2014 | YL25          | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 4400       |
| 15/Mar/2014 | YL87          | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | Lotek GPS 3300       |
| 16/Mar/2014 | BL268         | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | VHF                  |

| Date        | Animal ID     | Method      | Blood | Hair | Tooth | Preg Check | Pregnant | VIT | Collar                    |
|-------------|---------------|-------------|-------|------|-------|------------|----------|-----|---------------------------|
| 17/Mar/2014 | OR79          | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | VHF                       |
| 17/Mar/2014 | OR29          | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | VHF                       |
| 17/Mar/2014 | OR91          | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | VHF                       |
| 18/Mar/2014 | OR10          | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | Lotek GPS 3300            |
| 18/Mar/2014 | BL257         | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | VHF                       |
| 20/Mar/2014 | YL108 (BL236) | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | VHF                       |
| 20/Mar/2014 | BL288         | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | VHF                       |
| 23/Mar/2014 | OR100         | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | Lotek Lifecycle prototype |
| 23/Mar/2014 | OR78          | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | Lotek GPS 4400            |
| 25/Mar/2014 | OR84          | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | Lotek GPS 4400            |
| 29/Mar/2014 | OR16          | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | VHF                       |
| 29/Mar/2014 | OR85          | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | VHF                       |
| 30/Mar/2014 | OR02          | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | Lotek GPS 4400            |
| 31/Mar/2014 | OR97          | Ground Dart | Yes   | Yes  | No    | Yes        | Yes      | Yes | Lotek Lifecycle satellite |
| 31/Mar/2014 | BL261         | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | VHF                       |
| 31/Mar/2014 | OR17          | Ground Dart | Yes   | Yes  | Yes   | Yes        | Yes      | Yes | VHF                       |
| 10/Feb/2015 | YL109 (OR35)  | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400            |
| 10/Feb/2015 | YL110 (OR29)  | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400            |
| 11/Feb/2015 | YL107         | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 3300            |
| 11/Feb/2015 | YL111 (OR6)   | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400 ARGOS      |
| 11/Feb/2015 | YL112 (OR38)  | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 3300            |
| 11/Feb/2015 | YL113 (OR31)  | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                       |
| 11/Feb/2015 | YL114 (BL274) | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                       |
| 12/Feb/2015 | YL115 (OR34)  | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                       |
| 12/Feb/2015 | YL116 (OR83)  | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                       |
| 12/Feb/2015 | YL117 (OR3)   | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                       |
| 12/Feb/2015 | OR91          | Ground Dart | YES   | YES  | NO    | YES        | NO       | NO  | VHF                       |
| 13/Feb/2015 | YL118 (OR8)   | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400            |
| 13/Feb/2015 | OR89          | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400            |
| 13/Feb/2015 | YL119 (BL245) | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                       |

| Date        | Animal ID          | Method      | Blood | Hair | Tooth | Preg Check | Pregnant | VIT | Collar               |
|-------------|--------------------|-------------|-------|------|-------|------------|----------|-----|----------------------|
| 13/Feb/2015 | OR92               | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400       |
| 13/Feb/2015 | YL120 (BL290)      | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400       |
| 13/Feb/2015 | YL121 (BL250)      | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                  |
| 14/Feb/2015 | YL122 (BL244)      | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | VHF                  |
| 14/Feb/2015 | YL123 (OR7)        | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                  |
| 14/Feb/2015 | YL124              | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 4400 ARGOS |
| 15/Feb/2015 | OR82               | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400       |
| 15/Feb/2015 | OR81               | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                  |
| 15/Feb/2015 | YL127              | Ground Dart | YES   | YES  | YES   | YES        | NO       | NO  | Lotek GPS 4400       |
| 15/Feb/2015 | YL126 (OR20)       | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | VHF                  |
| 15/Feb/2015 | YL125 (BL286)      | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                  |
| 15/Feb/2015 | YL128 (BL261)      | Ground Dart | YES   | YES  | NO    | YES        | NO       | NO  | VHF                  |
| 16/Feb/2015 | YL129 (OR11)       | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                  |
| 16/Feb/2015 | YL130 (OR9)        | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                  |
| 16/Feb/2015 | YL131 (OR32)       | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                  |
| 17/Feb/2015 | YL135 (BL222)      | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                  |
| 17/Feb/2015 | YL132 (OR2)        | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                  |
| 24/Feb/2015 | YL140 (BL257)      | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                  |
| 17/Feb/2015 | YL133 (OR87)       | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                  |
| 17/Feb/2015 | YL134 (BL262)      | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 4400       |
| 18/Feb/2015 | YL138 (BL295)      | Ground Dart | NO    | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400       |
| 18/Feb/2015 | YL139 (BL220)      | Ground Dart | NO    | YES  | YES   | YES        | YES      | YES | Lotek GPS 4400       |
| 18/Feb/2015 | YL137 (Calf Ellie) | Ground Dart | YES   | YES  | NO    | YES        | NO       | NO  | VHF                  |
| 18/Feb/2015 | YL136 (BL284)      | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                  |
| 19/Feb/2015 | YL105              | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                  |
| 19/Feb/2015 | OR99               | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400       |
| 19/Feb/2015 | OR52 (OR28)        | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                  |
| 27/Feb/2015 | GR513              | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 4400       |
| 24/Feb/2015 | OR96               | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                  |
| 24/Feb/2015 | OR51 (OR19)        | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | VHF                  |

| Date        | Animal ID    | Method      | Blood | Hair | Tooth | Preg Check | Pregnant | VIT | Collar                    |
|-------------|--------------|-------------|-------|------|-------|------------|----------|-----|---------------------------|
| 26/Feb/2015 | YL102        | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                       |
| 26/Feb/2015 | OR53 (OR22)  | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 4400            |
| 26/Feb/2015 | OR54 (BL260) | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400            |
| 26/Feb/2015 | YL100        | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400            |
| 27/Feb/2015 | OR80         | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400 ARGOS      |
| 27/Feb/2015 | OR55 (OR15)  | Ground Dart | NO    | YES  | NO    | YES        | YES      | YES | VHF                       |
| 1/Mar/2015  | OR57 (OR27)  | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                       |
| 1/Mar/2015  | OR56 (BL251) | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 7000 ARGOS      |
| 1/Mar/2015  | OR88         | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                       |
| 4/Mar/2015  | OR97         | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek Lifecycle satellite |
| 4/Mar/2015  | OR79         | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                       |
| 4/Mar/2015  | OR58 (BL292) | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                       |
| 4/Mar/2015  | OR59 (BL259) | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                       |
| 5/Mar/2015  | OR60 (BL288) | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400            |
| 5/Mar/2015  | OR61         | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | VHF                       |
| 5/Mar/2015  | OR63 (BL242) | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | VHF                       |
| 5/Mar/2015  | YL108        | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                       |
| 7/Mar/2015  | OR78         | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400 ARGOS      |
| 7/Mar/2015  | OR66 (BL293) | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | VHF                       |
| 7/Mar/2015  | OR65 (BL265) | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 3300            |
| 11/Feb/2016 | OR100        | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400            |
| 11/Feb/2016 | OR60         | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400            |
| 11/Feb/2016 | YL151 (YL87) | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400            |
| 12/Feb/2016 | YL152 (YL63) | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 4400            |
| 12/Feb/2016 | YL153        | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 4400            |
| 12/Feb/2016 | YL154        | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 4400            |
| 12/Feb/2016 | YL107        | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400            |
| 13/Feb/2016 | YL114        | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 7000            |
| 13/Feb/2016 | YL155 (OR16) | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 7000            |
| 13/Feb/2016 | YL118        | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400            |

| Date        | Animal ID        | Method      | Blood | Hair | Tooth | Preg Check | Pregnant | VIT | Collar                         |
|-------------|------------------|-------------|-------|------|-------|------------|----------|-----|--------------------------------|
| 14/Feb/2016 | YL156            | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 7000                 |
| 14/Feb/2016 | YL157 (OR37)     | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400                 |
| 14/Feb/2016 | OR89             | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400                 |
| 14/Feb/2016 | YL158 (OR21)     | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 4400                 |
| 15/Feb/2016 | YL112            | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 7000                 |
| 16/Feb/2016 | YL159            | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 4400                 |
| 16/Feb/2016 | YL160 (OR12)     | Ground Dart | YES   | NO   | NO    | YES        | NO       | NO  | Lotek GPS 4400                 |
| 16/Feb/2016 | YL161            | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 4400                 |
| 16/Feb/2016 | YL133            | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 7000                 |
| 16/Feb/2016 | YL162 (Claudine) | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400                 |
| 17/Feb/2016 | YL163            | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 4400                 |
| 17/Feb/2016 | YL164 (BL255)    | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 7000                 |
| 17/Feb/2016 | OR54             | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400                 |
| 17/Feb/2016 | YL100            | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400                 |
| 18/Feb/2016 | YL120            | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400                 |
| 18/Feb/2016 | OR65             | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400                 |
| 19/Feb/2016 | OR61             | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400                 |
| 19/Feb/2016 | YL124            | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400                 |
| 19/Feb/2016 | YL115            | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400                 |
| 19/Feb/2016 | YL165 (OR17)     | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Mortality; see incident report |
| 20/Feb/2016 | OR56             | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 7000                 |
| 20/Feb/2016 | OR78             | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400                 |
| 20/Feb/2016 | OR97             | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400                 |
| 21/Feb/2016 | OR99             | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400                 |
| 21/Feb/2016 | YL166            | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 4400                 |
| 21/Feb/2016 | YL167 (OR10)     | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400                 |
| 22/Feb/2016 | OR52             | Ground Dart | YES   | YES  | NO    | YES        | NO       | NO  | Lotek GPS 4400                 |
| 22/Feb/2016 | YL137            | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400                 |
| 22/Feb/2016 | YL168            | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 4400                 |
| 26/Feb/2016 | OR66             | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400                 |

| Date        | Animal ID | Method      | Blood | Hair | Tooth | Preg Check | Pregnant | VIT | Collar          |
|-------------|-----------|-------------|-------|------|-------|------------|----------|-----|-----------------|
| 26/Feb/2016 | OR81      | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400  |
| 26/Feb/2016 | YL169     | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 7000  |
| 26/Feb/2016 | YL170     | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 4400  |
| 27/Feb/2016 | YL134     | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400  |
| 27/Feb/2016 | YL171     | Ground Dart | YES   | YES  | YES   | YES        | YES      | YES | Lotek GPS 4400  |
| 27/Feb/2016 | YL172     | Ground Dart | YES   | YES  | NO    | YES        | YES      | YES | Lotek GPS 4400S |

## **Appendix I-2.** Details of locations of western migrants in the Ya Ha Tinda herd, 2013 – 2014.

We located western migrants and any missing elk on 2 short helicopter flights (2 July and 4 July 2013) and 1 driving/hiking trip to Banff NP in July 2013. The collar signals of 4 western migrant elk (IDs: OR5 – upper Panther, OR 33 – Pipestone Valley, OR78 – Hector Lake, BL622 – Hector Lake; Appendix III) were heard via helicopter, and 3 additional signals (IDs: OR11, OR13, OR 17) were heard on the driving/hiking trip in the areas around Lake Louise and Hector Lake. A mortality signal from one western migrant (ID: BL272) was heard along the Cascade Fire Road by Blair Fyten on a flight in late September 2013 (see details in Appendix III).

## **Appendix I-3.** Details of adult elk mortalities which occurred in the Ya Ha Tinda herd from 1 January 2013 until present.

- OR5's collar was found on 2 July 2013 after hearing a mortality signal during a helicopter flight over Banff. Collar was buried under rocks in a drainage; did not find remains but collar appeared to have been chewed. Not seen since 30 March 2012.
- BL622 was found dead near Hector Lake in BNP (547359/5717403) during an aerial survey on 4 July 2013. After picking up a mortality signal on the helicopter flight, we found the carcass in closed habitat, a few hundred meters from the Bow River. One leg was lying 50 m from BL622. The carcass seemed old even though most of the hair and skin was still intact. There were signs of carnivore presence but unfortunately, we did not have time to investigate the mortality in detail.
- On the 22 September 2013, cow elk (ID: OR94) was heard on mortality. She was found at 10:00 lying in a ditch, about 200 meters from the road (619459/5723816). A hole 10 cm in diameter was noticed under her right shoulder. Another small hole (1 cm) was found on the other side of her body, in the middle of her belly. When moving the carcass, we could hear air going through a hole in the lungs. While driving back to the ranch to get a screwdriver for the collar we were stopped by Fish and Wildlife Officer Jason Cadzow. He offered to investigate the carcass and skin it. She had clearly suffered from a massive hemorrhage and was bruised on her back and sides, indicating a vehicle collision. This cow is the mother of calf BD13, which has since been heard alive and seen at the ranch on several occasions and appears to have joined up with other members of the herd.
- BL272 was heard on mortality by Blair Fyten during his aerial survey on 27 September 2013. We found her on 29 September 2013 in a coniferous forest to the southeast of Snowflake Lake, just off the old fire road. She had been buried by a grizzly bear and bear sign, including digging and scat, were found on the road ~100 m off the kill. Scats were also found close to the carcass. It was not possible to determine whether she had been attacked or scavenged by the bear. She was last seen and heard in March 2013 and likely died during late summer (August).
- On the 3 October 2013 at 10:00, a cow elk's head (ID: OR26) was found along with a gut pile on the edge of a cut block behind Moutain Aire Lodge (617833/5723546). ATV tracks were leaving the carcass and heading towards a forestry trail indicating she was likely killed by First Nations on 1 October 2013.
- YL 25 started her migration into Banff National Park on 23 May 2014. She was first heard on mortality on 27 May 2014. Only the collar was retrieved. It did not appear

- chewed on and was too tight for the elk to remove it. It was found on the edge of a stream connected to the Red Deer River, and appeared to have spent time in the water. The cause of mortality is unknown. The VIT was accurately pinpointed in the Red Deer River upstream from the collar. The cow most likely died farther up the river.
- BL267 died on 24 August 2014 after being injured by hunters or poachers. She was most likely resting on a hill by the Coal Camp junction (bed sites were found) when she was shot. She was found 400 m away in the forest. She was totally intact apart from a bullet wound through her abdomen. She was in excellent condition and was last seen alive accompanied by a calf. Remains of a young male were also discovered at the bottom of the hill. The head had been taken along with the meat. Drag marks and ATV tracks were covering the scene. A bear had found the gut pile and buried it.

**Appendix I-4**. Calf birth sites determined by location of VITs and/or newborn calf in the Ya Ha Tinda elk herd, 2013 – 2015.

| Cow ID   | Migratory | VIT       | Date VIT  | General        | Birth Site | Birth Site | Calf      | Calf ID | Calf             |
|----------|-----------|-----------|-----------|----------------|------------|------------|-----------|---------|------------------|
| COW ID   | Status    | Frequency | Retrieved | Birth Site     | Easting    | Northing   | Captured? | Can ID  | Surviving?       |
| OR41     | Resident  | 155.525   | 25-Oct-13 | BNP            | 587697     | 5722393    | N         |         | N                |
| OR77     | Resident  | 155.595   | 5-May-13  | North of YHT   | 602473     | 5737241    | Y         | BH13    | N                |
| OR78     | Western   | 155.915   | 27-Sep-13 | BNP            | 562904     | 5712358    | N         |         | N                |
| OR79     | Resident  | 155.703   | 25-May-13 | YHT            | 603552     | 5732450    | Y         | BC13    | Y                |
| OR80     | Resident  | 155.974   | 3-Jun-13  | YHT            | 597853     | 5735585    | Y         | BJ13    | N                |
| OR81     | Eastern   | 155.673   | 29-Jun-13 | East of YHT    | 619082     | 5723446    | N         |         |                  |
| OR82     | Resident  | 155.504   | 1-Jun-13  | Border BNP/YHT | 591802     | 5728800    | N         |         | N                |
| OR83     | Resident  | 155.465   | 28-May-13 | YHT            | 600699     | 5734631    | Y         | BL13    | N                |
| OR84     | Resident  | 155.764   | 27-May-13 | North of YHT   | 601172     | 5738472    | Y         | BS13    | N                |
| OR85     | Resident  | 155.544   | 2-Jun-13  | North of YHT   | 592930     | 5740667    | N         |         |                  |
| OR87     | Resident  | 155.564   | 27-May-13 | YHT            | 598696     | 5732592    | Y         | BI13    | N                |
| OR88     | Resident  | 155.853   | 9-Jun-13  | YHT            | 598669     | 5735027    | Y         | BT13    | N                |
| OR89     | UNK       | 155.824   | 29-Sep-13 | BNP            | 583227     | 5716632    | N         |         | N                |
| OR90     | Resident  | 155.794   | 1-Jun-13  | North of YHT   | 593765     | 5741419    | N         |         |                  |
| OR91     | Resident  | 155.733   | 19-May-13 | YHT            | 601815     | 5731854    | Y         | BE13    | Y                |
| OR92     | Eastern   | 155.643   | 19-Jun-13 | East of YHT    | 617092     | 5722446    | N         |         |                  |
| OR93     | Resident  | 155.614   | 28-May-13 | North of YHT   | 600297     | 5737401    | N         |         |                  |
| OR94     | Eastern   | 155.483   | 26-May-13 | East of YHT    | 617866     | 5723815    | Y         | BD13    | Y                |
| OR95     | Western   | 155.445   | Not found | UNK            | UNK        | UNK        | N         |         |                  |
| OR96     | Resident  | 155.944   | 30-May-13 | YHT            | 601222     | 5733283    | Y         | BG13    | N                |
| OR6      | Eastern   | N/A       | N/A       | East of YHT    | 616454     | 5720289    | Y         | BA13    | N                |
| OR3      | Resident  | N/A       | N/A       | YHT            | UNK        | UNK        | Y         | BF13    | UNK - likely not |
| OR100    | Resident  | N/A       | N/A       | YHT            | 599080     | 5733475    | Y         | BR13    | Y                |
| GR127    | Resident  | N/A       | N/A       | YHT            | UNK        | UNK        | Y         | BN13    | Y                |
| BL290    | Resident  | N/A       | N/A       | North of YHT   | UNK        | UNK        | Y         | OR43    | N                |
| untagged | Resident  | N/A       | N/A       | YHT            | UNK        | UNK        | Y         | BB13    | N                |
| BL245    | Resident  | 155.943   | 30-May-14 | North of YHT   | 603012     | 5736867    | Y         | RH14    | Y                |

|        | Migratory | VIT       | Date VIT  | General      | Birth Site | Birth Site | Calf      | Calf ID   | Calf       |
|--------|-----------|-----------|-----------|--------------|------------|------------|-----------|-----------|------------|
| Cow ID | Status    | Frequency | Retrieved | Birth Site   | Easting    | Northing   | Captured? | Call ID   | Surviving? |
| BL257  | Eastern   | 155.294   | 24-May-14 | East of YHT  | 618050     | 5722276    | Y         | YD14      | N          |
| BL259  | Eastern   | 153.003   | 30-May-14 | East of YHT  | 619816     | 5721498    | Y         | BQ14      | N          |
| BL261  | Eastern   | 155.014   | 24-May-14 | East of YHT  | 620630     | 5724025    | Y         | YO14      | Y          |
| BL268  | Eastern   | 155.313   | 22-Jun-14 | East of YHT  | 620593     | 5722395    | Y         | No ID     | N          |
| BL274  | Eastern   | 155.915   | 28-May-14 | East of YHT  | 620939     | 5722004    | Y         | YJ14      | Y          |
| BL284  | Eastern   | 155.543   | 25-May-14 | East of YHT  | 618828     | 5723730    | Y         | YC14      | N          |
| BL288  | Western   | 152.902   | 14-Jul-14 | BNP          | 593180     | 5728801    | N         |           | N          |
| BL295  | Resident  | 152.923   | 10-Aug-14 | North of YHT | 598771     | 5742856    | N         |           | N          |
| OR02   | Resident  | 155.213   | 3-Jun-14  | YHT          | 602798     | 5731827    | Y         | YV14      | Y          |
| OR06   | Eastern   | 155.235   | 18-May-14 | East of YHT  | 619017     | 5724287    | Y         | YM14      | N          |
| OR07   | Eastern   | 155.852   | 27-May-14 | East of YHT  | 617249     | 5722451    | Y         | YU14      | Y          |
| OR10   | Resident  | 155.113   | 17-May-14 | YHT          | 601302     | 5734191    | Y         | stillborn | N          |
| OR100  | Resident  | 152.802   | 18-May-14 | YHT          | 599555     | 5734202    | N         |           |            |
| OR15   | Western   | 155.792   |           | BNP          |            |            | N         |           |            |
| OR16   | Eastern   | 152.722   | 23-May-14 | East of YHT  | 616547     | 5724831    | Y         | YK14      | Y          |
| OR17   | Western   | 152.580   |           | BNP          |            |            | N         |           |            |
| OR23   | Eastern   | 155.464   | 10-Jul-14 | East of YHT  | 619628     | 5719993    | N         |           | Y          |
| OR24   | Resident  | 155.414   |           | BNP          | 583957     | 5724309    | N         |           | N          |
| OR29   | Resident  | 155.065   | 31-May-14 | YHT          | 597264     | 5733157    | Y         | A114      | N          |
| OR31   | Resident  | 155.592   | 25-May-14 | YHT          | 599996     | 5732661    | Y         | YY14      | N          |
| OR32   | Resident  | 152.963   |           | BNP          |            |            | N         |           |            |
| OR34   | Resident  | 155.642   | 29-Jun-14 | North of YHT | 600652     | 5738437    | N         |           | N          |
| OR35   | Eastern   | 155.502   | 22-May-14 | East of YHT  | 620538     | 5722037    | Y         | B114      | Y          |
| OR37   | Resident  | 155.524   | 31-May-14 | YHT          | 598071     | 5733393    | Y         | YQ14      | N          |
| OR39   | Eastern   | 155.703   | 23-May-14 | East of YHT  | 621468     | 5723849    | N         |           | N          |
| OR40   | Resident  | 155.673   | 23-Jul-14 | BNP          | 580797     | 5719396    | N         |           |            |
| OR77   | Resident  | 155.973   | 4-Jun-14  | North of YHT | 602353     | 5737468    | Y         | YX14      | Y          |
| OR78   | Western   | 155.352   | 8-Jul-14  | BNP          | 545350     | 5720688    | N         |           |            |
| OR79   | Resident  | 155.333   | 26-May-14 | YHT          | 597540     | 5735192    | N         |           |            |

| Cow ID        | Migratory | VIT       | Date VIT  | General      | Birth Site | Birth Site | Calf      | Calf ID | Calf       |
|---------------|-----------|-----------|-----------|--------------|------------|------------|-----------|---------|------------|
| Cow ID        | Status    | Frequency | Retrieved | Birth Site   | Easting    | Northing   | Captured? | Calf ID | Surviving? |
| OR80          | Resident  | N/A       | N/A       | UNK          | UNK        | UNK        | Y         | BK14    | Y          |
| OR84          | N/A       | 152.843   | 31-Mar-14 | N/A          | N/A        | N/A        | N/A       |         |            |
| OR85          | Resident  | 155.053   | 31-May-14 | North of YHT | 592749     | 5740895    | Y         | YZ14    | N          |
| OR91          | Resident  | 155.444   | 27-May-14 | YHT          | 599963     | 5733421    | Y         | C114    | Y          |
| OR96          | Resident  | 155.823   | 7-Jun-14  | YHT          | 599477     | 5732269    | Y         | RD14    | N          |
| OR97          | Resident  | 155.193   | 6-Jun-14  | YHT          | 600458     | 5734492    | Y         | YT14    | N          |
| OR98          | Resident  | 155.763   | 3-Jun-14  | YHT          | 601034     | 5734566    | Y         | RG14    | N          |
| YL100         | Resident  | 155.563   | 26-May-14 | YHT          | 598789     | 5734447    | Y         | RA14    | N          |
| YL101         | Resident  | 155.613   | 28-May-14 | YHT          | 598101     | 5732139    | Y         | YA14    | N          |
| YL102         | Resident  | 155.482   | 31-May-14 | YHT          | 601142     | 5732678    | Y         | No ID   | N          |
| YL103 (GR183) | Eastern   | 155.733   | 1-Jun-14  | East of YHT  | UNK        | UNK        | Y         | RF14    | Y          |
| YL104         | Western   | 155.453   | 2-Jul-14  | BNP          | 546986     | 5715368    | N         |         |            |
| YL105         | Resident  | 155.433   | 4-Jun-14  | North of YHT | 602689     | 5735655    | Y         | YW14    | Y          |
| YL106         | Western   | 152.642   | 2-Jul-14  | BNP          | 547101     | 5716749    | N         |         |            |
| YL107         | Resident  | 155.583   | 2-Jul-14  | YHT          | 597409     | 5735286    | N         |         | N          |
| YL108 (BL236) | Resident  | 152.943   | 13-Jul-14 | YHT          | 600224     | 5729921    | N         |         | N          |
| YL25          | Western   | 152.982   |           | BNP          |            |            | N         |         |            |
| YL87          | Resident  | 153.036   | 15-May-14 | North of YHT | 601765     | 5736704    | Y         | YE14    | Y          |
| UNK           | Resident  | N/A       | N/A       | YHT          | UNK        | UNK        | Y         | YP14    | N          |
| untagged      | Resident  | N/A       | N/A       | YHT          | UNK        | UNK        | Y         | YF14    | N          |
| untagged      | Resident  | N/A       | N/A       | YHT          | UNK        | UNK        | Y         | YB14    | N          |
| untagged      | UNK       | N/A       | N/A       | BNP          | UNK        | UNK        | Y         | KK14    | UNK        |
| GR513         | Western   | 155.703   | 28-Aug-15 | BNP          | 596363     | 5689234    | N         |         |            |
| OR51 (OR19)   | Western   | 152.682   | 1-Aug-15  | BNP          | 591263     | 5713091    | N         |         |            |
| OR52 (OR28)   | Eastern   | 155.733   | 24-May-15 | East of YHT  | 623437     | 5723834    | Y         | YR15    | Y          |
| OR53 (OR22)   | Eastern   | 153.063   | N/A       | N/A          | N/A        | N/A        | N/A       |         |            |
| OR54 (BL260)  | Resident  | 155.544   | 31-May-15 | North of YHT | 595791     | 5737283    | Y         | RW15    | N          |
| OR55 (OR15)   | Western   | 155.064   |           | UNK          | UNK        | UNK        | N         |         |            |
| OR56 (BL251)  | Western   | 152.562   | 28-Aug-15 | BNP          | 589784     | 5695183    | N         |         |            |
|               |           |           | -         |              |            |            |           |         |            |

| Cow ID       | Migratory | VIT       | Date VIT  | General      | Birth Site | Birth Site | Calf      | Calf ID | Calf               |
|--------------|-----------|-----------|-----------|--------------|------------|------------|-----------|---------|--------------------|
|              | Status    | Frequency | Retrieved | Birth Site   | Easting    | Northing   | Captured? |         | Surviving?         |
| OR57 (OR27)  | Eastern   | 155.053   | 31-May-15 | East of YHT  | 615057     | 5725962    | Y         | RB15    | Y                  |
| OR58 (BL292) | Resident  | 155.463   | 27-May-15 | YHT          | 599541     | 5733969    | Y         | YO15    | Y                  |
| OR59 (BL259) | Eastern   | 152.782   | 29-May-15 | East of YHT  | 619764     | 5721646    | Y         | RI15    | Y                  |
| OR60 (BL288) | Western   | 155.413   | 20-Jul-15 | BNP          | 581546     | 5732200    | N         |         |                    |
| OR61         | Resident  | 155.193   | 8-Jun-15  | YHT          | 598297     | 5733791    | Y         | SS15    | N                  |
| OR63 (BL242) | Resident  | 155.210   | 14-Mar-15 | YHT          | 597809     | 5734572    | N         | No ID   | N                  |
| OR65 (BL265) | Resident  | 152.722   |           | South of YHT | UNK        | UNK        | N         |         |                    |
| OR66 (BL293) | Resident  | 152.940   | 1-Jun-15  | North of YHT | 596411     | 5738460    | N         |         |                    |
| OR78         | Western   | 152.943   | 13-Sep-15 | BNP          | 542737     | 5721577    | N         |         |                    |
| OR79         | Resident  | 155.293   | 1-Jun-15  | YHT          | 600802     | 5734856    | Y         | YI15    | Y                  |
| OR80         | Resident  | 155.234   | 19-Jun-15 | North of YHT | 599082     | 5736350    | Y         | RY15    | Y                  |
| OR81         | Eastern   | 155.153   | 2-Jun-15  | East of YHT  | 617288     | 5723271    | Y         | E115    | N                  |
| OR82         | Resident  | 152.602   | 28-May-15 | YHT          | 601090     | 5734803    | N         |         |                    |
| OR88         | Resident  | 152.641   | 2-Jun-15  | YHT          | 602889     | 5734950    | N         |         |                    |
| OR89         | Western   | 155.253   |           | BNP          | UNK        | UNK        | N         |         |                    |
| OR92         | Eastern   | 155.272   | 2-Jul-15  | East of YHT  | 617069     | 5722437    | Y         | RU15    | Y                  |
| OR96         | Resident  | 153.032   | 10-Jun-15 | YHT          | 603517     | 5732358    | Y         | RP15    | Y                  |
| OR97         | Resident  | 155.314   | 24-Jun-15 | North of YHT | 598253     | 5739418    | N         |         |                    |
| OR99         | Resident  | 155.562   | 7-Jun-15  | YHT          | 598879     | 5734094    | Y         | RC15    | N                  |
| YL100        | Resident  | 152.802   | 30-May-15 | YHT          | 601737     | 5733728    | Y         | RL15    | UNK - dropped tag? |
| YL102        | Resident  | 155.353   | 5-Jun-15  | YHT          | 591173     | 5730230    | Y         | I115    | N                  |
| YL105        | Resident  | 152.841   | 10-Jun-15 | North of YHT | 603469     | 5735541    | Y         | K115    | N                  |
| YL107        | Resident  | 155.914   | 24-May-15 | North of YHT | 599999     | 5736695    | Y         | YS15    | N                  |
| YL108        | Resident  | 155.582   | 25-May-15 | YHT          | 598427     | 5732898    | Y         | BM15    | N                  |
| YL109 (OR35) | Eastern   | 153.330   | 13-May-15 | East of YHT  | 620577     | 5724783    | N         |         |                    |
| YL110 (OR29) | Resident  | 155.113   | 6-Jul-15  | YHT          | 596379     | 5730522    | Y         | RM15    | N                  |
| YL111 (OR6)  | Eastern   | 155.504   | N/A       | N/A          | N/A        | N/A        | N/A       |         |                    |
| YL112 (OR38) | Resident  | 155.014   | 2-Jun-15  | YHT          | 601744     | 5732683    | Y         | RV15    | N                  |
| YL113 (OR31) | Resident  | 153.003   | 28-May-15 | North of YHT | 601000     | 5734427    | Y         | RR15    | N                  |

| Cow ID        | Migratory | VIT       | Date VIT  | General      | Birth Site | Birth Site | Calf      | Calf ID | Calf       |
|---------------|-----------|-----------|-----------|--------------|------------|------------|-----------|---------|------------|
| Cow ID        | Status    | Frequency | Retrieved | Birth Site   | Easting    | Northing   | Captured? | Call ID | Surviving? |
| YL114 (BL274) | Eastern   | 155.523   | 22-May-15 | East of YHT  | 624188     | 5725458    | Y         | YG15    | Y          |
| YL115 (OR34)  | UNK       | 155.822   |           | UNK          | UNK        | UNK        | N         |         |            |
| YL116 (OR83)  | Resident  | 152.902   | 2-Jun-15  | North of YHT | 599620     | 5737380    | N         |         |            |
| YL117 (OR3)   | Resident  | 155.482   | 6-Aug-15  | South of YHT | 596728     | 5727335    | N         |         |            |
| YL118 (OR8)   | Eastern   | 155.853   | 29-May-15 | East of YHT  | 613139     | 5723702    | Y         | BP15    | Y          |
| YL119 (BL245) | Resident  | 155.612   | 4-Jun-14  | North of YHT | 603197     | 5737032    | Y         | RT15    | Y          |
| YL120 (BL290) | Resident  | 152.621   | 1-Jun-15  | North of YHT | 594422     | 5737896    | Y         | RQ15    | N          |
| YL121 (BL250) | Resident  | 155.371   |           | North of YHT | UNK        | UNK        | N         |         |            |
| YL122 (BL244) | Eastern   | 155.032   | 8-Jun-15  | East of YHT  | 617110     | 5720984    | Y         | RX15    | Y          |
| YL123 (OR7)   | Eastern   | 155.070   | N/A       | N/A          | N/A        | N/A        | N/A       |         |            |
| YL124         | Resident  | 152.663   | 27-May-15 | YHT          | 597806     | 5734578    | Y         | RE15    | N          |
| YL125 (BL286) | Resident  | 152.822   | 14-Jun-15 | North of YHT | 601156     | 5740447    | N         |         |            |
| YL126 (OR20)  | Eastern   | 155.093   | 19-May-15 | East of YHT  | 608884     | 5726471    | Y         | YN15    | Y          |
| YL129 (OR11)  | Western   | 155.133   | 31-May-15 | BNP          | 545091     | 5721105    | N         |         |            |
| YL130 (OR9)   | Eastern   | 155.973   | 27-Jun-15 | East of YHT  | 608258     | 5725560    | Y         | G115    | Y          |
| YL131 (OR32)  | Mixed     | 155.333   | 18-Jul-15 | BNP          | 573503     | 5711951    | N         |         |            |
| YL132 (OR2)   | Resident  | 155.643   | 7-Jun-15  | YHT          | 600891     | 5732040    | Y         | RO15    | N          |
| YL133 (OR87)  | Resident  | 155.762   | 28-May-15 | YHT          | 600022     | 5734776    | Y         | RK15    | N          |
| YL134 (BL262) | Eastern   | 152.743   | 12-Jul-15 | East of YHT  | 613906     | 5716968    | N         |         |            |
| YL135 (BL222) | UNK       | 155.944   | N/A       | N/A          | N/A        | N/A        | N/A       |         |            |
| YL136 (BL284) | Eastern   | 155.433   | 28-May-15 | East of YHT  | 616081     | 5720801    | Y         | L115    | N          |
| YL138 (BL295) | Eastern   | 155.672   | 24-Aug-15 | North of YHT | 598451     | 5743519    | N         |         |            |
| YL139 (BL220) | Eastern   | 155.592   | 23-Jun-15 | East of YHT  | 617308     | 5722831    | N         |         |            |
| YL140 (BL257) | Eastern   | 152.922   | 28-May-15 | East of YHT  | 617973     | 5724442    | Y         | YH15    | N          |
| Untagged      | Resident  | N/A       | N/A       | YHT          | UNK        | UNK        | Y         | RJ15    | N          |
| Untagged      | Resident  | N/A       | N/A       | YHT          | UNK        | UNK        | Y         | RN15    | N          |

## **Appendix I-5.** Other notes of interest.

## Wolves:

To aid in assessing predation risk by wolves for elk, we determined the status of known den sites. In summer 2013, the ear-tag, jaw bone, and hind leg of a calf (ID: BT13) were found 20 m from a den site west of Scalp Creek and the cut block. A remote camera was put up and focused on the den entrances for ~ 1 week. Photos showed the den was active and a litter size of 3 wolf pups was counted.

A known den site in the main pasture was investigated, and at the time of the investigation in July, 2013, the den appeared unoccupied. No sign of wolf activity was detected around the site. However, after hearing wolves howling in September, 2013, we re-visited the den and found fresh wildlife trails in the grass leading to the den. In addition, some old bones had been brought to the area and appeared to have been chewed on. The wolves are known to use this den site as a rendezvous site in the summer.

Another known den site was visited in July, 2013, at West Lakes. The den is built in silt and has many entrances. Moreover it is really close to a medium-use trail and the wolves do not seem to use it anymore. No predator signs were found around it.

A last den site was visited in July, 2013, along the cutline about 500 m north of the trail. Semi-fresh grass was scattered at the bottom of the den and an old bone had been chewed on right next to an entrance. The site had probably been active earlier in the spring.

**Appendix II-1.** Calves captured in May and June, 2013-2015, on the Ya Ha Tinda Elk Project.

| Calf ID | Frequency | Cow ID   | Birth Site<br>Easting | Birth Site<br>Northing | Capture Date | Capture Site<br>Easting | Capture Site<br>Northing | Estimated Age at<br>Capture (hrs) |
|---------|-----------|----------|-----------------------|------------------------|--------------|-------------------------|--------------------------|-----------------------------------|
| BA13    | 152.582   | OR6      | 616454                | 5720289                | 27-May-13    | 616439                  | 5720282                  | 24                                |
| BB13    | 152.253   | untagged | UNK                   | UNK                    | 6-Jun-13     | 601092                  | 5733345                  | 168                               |
| BC13    | 152.6232  | OR79     | 603552                | 5732450                | 25-May-13    | 603555                  | 5732530                  | 27.5                              |
| BD13    | 152.273   | OR94     | 617866                | 5723815                | 26-May-13    | 618113                  | 5723798                  | 24                                |
| BE13    | 152.612   | OR91     | 601815                | 5731854                | 19-May-13    | 601815                  | 5731854                  | 2.5                               |
| BF13    | 152.293   | OR3      | UNK                   | UNK                    | 23-May-13    | 600982                  | 5733228                  | 48                                |
| BG13    | 152.313   | OR96     | 601222                | 5733283                | 30-May-13    | 601022                  | 5733283                  | 3.5                               |
| BH13    | 152.401   | OR77     | 602473                | 5737241                | 5-Jun-13     | 602446                  | 5737197                  | 3.5                               |
| BI13    | 152.161   | OR87     | 598696                | 5732592                | 27-May-13    | 598696                  | 5732592                  | 5                                 |
| BJ13    | 152.563   | OR80     | 597853                | 5735585                | 3-Jun-13     | 597845                  | 5735609                  | 15                                |
| BL13    | 152.201   | OR83     | 600699                | 5734631                | 28-May-13    | 600699                  | 5734631                  | 2                                 |
| BN13    | 152.523   | GR127    | UNK                   | UNK                    | 26-May-13    | 599602                  | 5732534                  | 48                                |
| BR13    | 152.462   | OR100    | 599080                | 5733475                | 27-May-13    | 599080                  | 5733475                  | 1                                 |
| BS13    | 152.644   | OR84     | 601172                | 5738472                | 27-May-13    | 600315                  | 5733172                  | 192                               |
| BT13    | 152.353   | OR88     | 598669                | 5735027                | 9-Jun-13     | 598891                  | 5735090                  | 22.5                              |
| OR43    | N/A       | BL290    | UNK                   | UNK                    | 30-May-13    | 600441                  | 5734634                  | 48                                |
| RH14    | 148.110   | BL245    | 603012                | 5736867                | 30-May-14    | 603088                  | 5736839                  | 24                                |
| YD14    | 149.622   | BL257    | 618050                | 5722276                | 24-May-14    | 618038                  | 5722300                  | 4                                 |
| BQ14    | 152.253   | BL259    | 619816                | 5721498                | 30-May-14    | 619816                  | 5721498                  | 0.5                               |
| YO14    | 152.183   | BL261    | 620630                | 5724025                | 24-May-14    | 620630                  | 5724025                  | 1                                 |
| UN06    | N/A       | BL268    | 620593                | 5722395                | 22-Jun-14    | 620593                  | 5722395                  | 24                                |
| YJ14    | 149.444   | BL274    | 620939                | 5722004                | 28-May-14    | 620939                  | 5722004                  | 6                                 |
| YC14    | 149.512   | BL284    | 618828                | 5723730                | 26-May-14    | 619240                  | 5723659                  | 29.5                              |
| YV14    | 149.531   | OR02     | 602798                | 5731827                | 3-Jun-14     | 602790                  | 5731845                  | 2.5                               |
| YM14    | 149.703   | OR06     | 619017                | 5724287                | 18-May-14    | 618990                  | 5724328                  | 5                                 |
| YU14    | 149.811   | OR07     | 617249                | 5722451                | 27-May-14    | 617249                  | 5722451                  | 2                                 |
| UN08    | N/A       | OR10     | 601302                | 5734191                | 17-May-14    | 601302                  | 5734191                  | 2                                 |

| Calf ID | Frequency | Cow ID        | Birth Site<br>Easting | Birth Site<br>Northing | Capture Date | Capture Site<br>Easting | Capture Site<br>Northing | Estimated Age at<br>Capture (hrs) |
|---------|-----------|---------------|-----------------------|------------------------|--------------|-------------------------|--------------------------|-----------------------------------|
| YK14    | 149.552   | OR16          | 616547                | 5724831                | 23-May-14    | 616547                  | 5724831                  | 6                                 |
| A114    | 149.222   | OR29          | 597264                | 5733157                | 31-May-14    | 597264                  | 5733157                  | 1.5                               |
| YY14    | 149.641   | OR31          | 599996                | 5732661                | 25-May-14    | 599984                  | 5732665                  | 4                                 |
| B114    | 149.744   | OR35          | 620538                | 5722037                | 22-May-14    | 620546                  | 5722024                  | 7                                 |
| YQ14    | 149.834   | OR37          | 598071                | 5733393                | 31-May-14    | 598259                  | 5733000                  | 2                                 |
| YX14    | 149.052   | OR77          | 602353                | 5737468                | 4-Jun-14     | 602344                  | 5737471                  | 5                                 |
| BK14    | 152.142   | OR80          | UNK                   | UNK                    | 6-Jun-14     | 600405                  | 5733089                  | 120-168                           |
| YZ14    | 149.461   | OR85          | 592749                | 5740895                | 31-May-14    | 592749                  | 5740895                  | 1                                 |
| C114    | 149.242   | OR91          | 599963                | 5733421                | 27-May-14    | 599358                  | 5733588                  | 7                                 |
| RD14    | 152.313   | OR96          | 599477                | 5732269                | 7-Jun-14     | 599477                  | 5732269                  | 2.5                               |
| YT14    | 149.602   | OR97          | 600458                | 5734492                | 6-Jun-14     | 600458                  | 5734492                  | 1.5                               |
| RG14    | 152.503   | OR98          | 601034                | 5734566                | 3-Jun-14     | 601118                  | 5734664                  | 1.5                               |
| RA14    | 152.644   | YL100         | 598789                | 5734447                | 26-May-14    | 598755                  | 5734344                  | 1                                 |
| YA14    | 149.482   | YL101         | 598101                | 5732139                | 28-May-14    | 598101                  | 5732139                  | 2                                 |
| UN07    | N/A       | YL102         | 601142                | 5732678                | 31-May-14    | 601142                  | 5732678                  | 10                                |
| RF14    | 152.094   | YL103         | UNK                   | UNK                    | 1-Jun-14     | 613482                  | 5723797                  | 15                                |
| YW14    | 149.352   | YL105         | 602689                | 5735655                | 4-Jun-14     | 602689                  | 5735655                  | 3.5                               |
| YE14    | 149.311   | YL87          | 601765                | 5736704                | 15-May-14    | 601775                  | 5736639                  | 6                                 |
| YF14    | 149.374   | untagged      | UNK                   | UNK                    | 23-May-14    | 599668                  | 5733152                  | 48-96                             |
| YP14    | 149.151   | UNK           | UNK                   | UNK                    | 1-Jun-14     | 600130                  | 5734267                  | 24                                |
| YB14    | 149.682   | untagged      | UNK                   | UNK                    | 25-May-14    | 600280                  | 5732319                  | <24                               |
| KK14    | 148.209   | untagged      | UNK                   | UNK                    | 25-May-14    | 580417                  | 5724241                  | 24                                |
| BM15    | 149.262   | YL108         | 598427                | 5732898                | 20-May-15    | 598439                  | 5732908                  | 3.5                               |
| BP15    | 148.922   | YL118 (OR8)   | 613139                | 5723702                | 25-May-15    | 613153                  | 5723700                  | 3                                 |
| E115    | 152.503   | OR81          | 617288                | 5723271                | 2-Jun-15     | 617288                  | 5723271                  | 2.5                               |
| G115    | 149.682   | YL130 (OR9)   | 608258                | 5725560                | 27-Jun-15    | 608273                  | 5725530                  | 3.5                               |
| I115    | 152.313   | YL102         | 591173                | 5730230                | 6-Jun-15     | 591172                  | 5730029                  | 20                                |
| K115    | 149.262   | YL105         | 603469                | 5735541                | 10-Jun-15    | 603498                  | 5735554                  | 4.5                               |
| L115    | 149.763   | YL136 (BL284) | 616081                | 5720801                | 28-May-15    | 616081                  | 5720801                  | 4.5                               |

| Calf ID | Frequency | Cow ID        | Birth Site<br>Easting | Birth Site<br>Northing | Capture Date | Capture Site<br>Easting | Capture Site<br>Northing | Estimated Age at<br>Capture (hrs) |
|---------|-----------|---------------|-----------------------|------------------------|--------------|-------------------------|--------------------------|-----------------------------------|
| RB15    | 148.582   | OR57 (OR27)   | 615057                | 5725962                | 31-May-15    | 615057                  | 5725962                  | 1                                 |
| RC15    | 149.513   | OR99          | 598879                | 5734094                | 1-Jun-15     | 598879                  | 5734094                  | 2.5                               |
| RE15    | 152.042   | YL124         | 597806                | 5734578                | 27-May-15    | 592340                  | 5730343                  | 11                                |
| RI15    | 149.252   | OR59 (BL259)  | 619764                | 5721646                | 29-May-15    | 619812                  | 5721790                  | 19                                |
| RJ15    | 148.872   | untagged      | UNK                   | UNK                    | 30-May-15    | 600355                  | 5733217                  | 12                                |
| RK15    | 148.938   | YL133 (OR87)  | 600022                | 5734776                | 28-May-15    | 599988                  | 5734661                  | 16                                |
| RL15    | 148.522   | YL100         | 601737                | 5733728                | 30-May-15    | 601737                  | 5733728                  | 3.75                              |
| RM15    | 148.368   | YL110 (OR29)  | 596379                | 5730522                | 4-Jun-15     | 596580                  | 5730406                  | 10.5                              |
| RN15    | 148.703   | untagged      | UNK                   | UNK                    | 29-May-15    | 601341                  | 5734650                  | 6                                 |
| RO15    | 148.341   | YL132 (OR2)   | 600891                | 5732040                | 28-May-15    | 600891                  | 5732040                  | 3                                 |
| RP15    | 148.982   | OR96          | 603517                | 5732358                | 10-Jun-15    | 603370                  | 5732259                  | 5                                 |
| RQ15    | 148.743   | YL120 (BL290) | 594422                | 5737896                | 1-Jun-15     | 594483                  | 5737823                  | 11                                |
| RR15    | 149.461   | YL113 (OR31)  | 601000                | 5734427                | 30-May-15    | 600451                  | 5736755                  | 104.5                             |
| RT15    | 149.482   | YL119 (BL245) | 603197                | 5737032                | 4-Jun-15     | 603294                  | 5737226                  | 18.5                              |
| RU15    | 149.602   | OR92          | 617069                | 5722437                | 3-Jun-15     | 617055                  | 5722417                  | 2                                 |
| RV15    | 152.400   | YL112 (OR38)  | 601744                | 5732683                | 2-Jun-15     | 601744                  | 5732683                  | 3                                 |
| RW15    | 152.200   | OR54 (BL260)  | 595791                | 5737283                | 31-May-15    | 595203                  | 5737216                  | 20.5                              |
| RX15    | 149.622   | YL122 (BL244) | 617110                | 5720984                | 8-Jun-15     | 617110                  | 5720984                  | 2.5                               |
| RY15    | 152.582   | OR80          | 599082                | 5736350                | 19-Jun-15    | 599088                  | 5736412                  | 5.5                               |
| SS15    | 149.853   | OR61          | 598297                | 5733791                | 9-Jun-15     | 598307                  | 5733661                  | 30.5                              |
| UN08    | N/A       | OR63 (BL242)  | 597809                | 5734572                | N/A          | N/A                     | N/A                      | 0                                 |
| YG15    | 149.092   | YL114 (BL274) | 624188                | 5725458                | 22-May-15    | 624349                  | 5725574                  | 25                                |
| YH15    | 149.422   | YL140 (BL257) | 617973                | 5724442                | 21-May-15    | 618033                  | 5724432                  | 12                                |
| YI15    | 149.012   | OR79          | 600802                | 5734856                | 1-Jun-15     | 600243                  | 5734939                  | 22                                |
| YN15    | 149.111   | YL126 (OR20)  | 608884                | 5726471                | 19-May-15    | 608840                  | 5726644                  | 23.5                              |
| YO15    | 149.333   | OR58 (BL292)  | 599541                | 5733969                | 27-May-15    | 599541                  | 5733969                  | 5.5                               |
| YR15    | 149.132   | OR52 (OR28)   | 623437                | 5723834                | 24-May-14    | 623485                  | 5723842                  | 11                                |
| YS15    | 149.853   | YL107         | 599999                | 5736695                | 22-May-15    | 599999                  | 5736695                  | 4                                 |

**Appendix II-2.** Example of calf capture form and measurements taken

| Date (ex: 01 JUN 2013):                                               | Time start:                 | Time end:             | Method: Ground / Heli / Both            |
|-----------------------------------------------------------------------|-----------------------------|-----------------------|-----------------------------------------|
|                                                                       |                             |                       | S Loc:                                  |
| VIT GPS Loc:                                                          | VIT Code:_                  |                       |                                         |
| Estimated Age (days):                                                 | Mother ID:                  | / Unknown /           | No ID                                   |
| Umbilical cord: Moist / Dry / A                                       | Absent                      | NOTE: N               | METRIC!! calipers in mm, TARE!          |
| Navel <u>diam</u> (~ 1.0mm):                                          | Navel: Bloody, mo           | ist, not scabbed / L  | ittle blood, lightly scabbed / Dry scab |
| Coat: Wet or matted dry; ears d                                       | amp inside / Dry            |                       |                                         |
| Front incisors (calipers ~ 0.1mm                                      | , 0 = tooth not erupted): I | Left I1 (inside edge  | e): (middle):                           |
|                                                                       |                             | Right I1 (inside):    | (middle):                               |
| Chest girth (0.5 cm):                                                 | Rt hind leg length (0       | ).5 cm):              | Ticks?: Y / N Hair?: Y / N              |
| Weight (0.5 lb): Sex: 1                                               | male / female Rt front      | hoof hair to growt    | h line (calipers ~ 0.1 mm):             |
| Sottom hooves: Entirely soft /                                        | < half hardened / All ha    | rdened <b>Walking</b> | surface: Ragged / Smooth                |
| Dew claws: Entirely soft / ~ upp                                      | er 1/4" hardened / Tips     | soft & white / Entir  | rely hard & dark                        |
| Stability: Unable to stand / Inse                                     | cure, wobbly, legs spread   | d / Somewhat sture    | dy / Very sturdy / Did not stand        |
| Stature: Humped / Somewhat                                            | t erect / Very erect        |                       |                                         |
| Fried to run? Y // N Calf vocal:                                      | : No / 1-2x / 3-5x / >6x    | Struggled? Y /        | N                                       |
|                                                                       | ation, predator sign, birth | site, cow behavior    | , w/ collared cow, weather, waypoint    |
| Notes (calf condition, chase dura                                     |                             |                       |                                         |
| Notes (calf condition, chase dura<br>name, photo numbers, etc., use b |                             |                       |                                         |

**Appendix II-3.** Mean measurements (range) taken on elk calves captured in the Ya Ha Tinda herd in 2013 - 2015.

|   |              | Standard Measurements |                    |                   |                   |                   |                                        |                    |                   |
|---|--------------|-----------------------|--------------------|-------------------|-------------------|-------------------|----------------------------------------|--------------------|-------------------|
|   |              |                       | <u>millimeters</u> |                   |                   |                   |                                        | <u>centimeters</u> |                   |
|   | Age<br>Class | # of<br>Calves        | Navel<br>Diam.     | Incisor<br>Inside | Incisor<br>Middle | Incisor<br>Outer* | Hoof<br>Growth<br>Line to<br>Hair Line | Chest Girth        | Right Hind<br>Leg |
| A | Newborn<br>- | 69                    | 13.5               | 0.7               | 3.1               | 3.7               | 11.0                                   | 60.9               | 41.5              |
|   | 1 day        |                       | (8.1 - 27.0)       | (0.0 - 4.6)       | (0 - 8.6)         | (1.0 - 6.1)       | (0.0 - 19.0)                           | (41.0 - 76.0)      | (31.0 - 46.0)     |
| В | 2-4 days     | 8                     | 12.1               | 2.4               | 5.0               | 5.1               | 11.7                                   | 61.4               | 41.1              |
|   |              |                       | (7.1 - 19.1)       | (0.6 - 4.4)       | (2.2 - 6.7)       | (4.4 - 5.6)       | (8.9 - 14.3)                           | (47.5 - 69.1)      | (38.4 - 42.9)     |
| C | 5-7 days     | 2                     | 8.0                | 4.1               | 6.2               |                   | 10.1                                   | 70.4               | 43.0              |
|   |              |                       | (7.4 - 8.5)        | (3.4 - 4.8)       | (4.1 - 8.2)       |                   | (7.1 - 13.0)                           | (70.0 - 70.8)      | (42.0 - 44.0)     |
| D | 8+ days      | 1                     | 12.6               | 6.2               | 8                 |                   | 9.5                                    | 68                 | 43                |

<sup>\*</sup> measured in 2015 only; n = 31 for age class A and n = 2 for age class B

**Appendix II-4.** Detected elk calf mortalities on the Ya Ha Tinda Elk Project, 2013 - 2016.

| Calf ID      | Frequency | Date<br>Found | Easting | Northing | Est. Time Since<br>Death (days) | Estimated<br>Age (days) | Cause of Death            |
|--------------|-----------|---------------|---------|----------|---------------------------------|-------------------------|---------------------------|
| BA13         | 152.582   | 7-Jun-13      | 615832  | 5722111  | < 1                             | 12                      | Bear                      |
| BB13         | 152.253   | 8-Jun-13      | 601113  | 5734678  | < 1                             | 9                       | Cougar                    |
| BF13         | 152.293   | N/A           | N/A     | N/A      | UNK                             | >80                     | Unknown                   |
| BG13         | 152.313   | 31-May-13     | 601048  | 5733560  | 0.5                             | 1                       | Bear                      |
| BH13         | 152.401   | 14-Jun-13     | 602163  | 5737099  | 1                               | 9                       | Bear                      |
| BI13         | 152.161   | 13-Jun-13     | 598642  | 5734924  | > 2                             | 17                      | Unk. pred likely bear     |
| BT13         | 152.353   | 27-Jun-13     | 596019  | 5732609  | 4-5                             | 19                      | Wolf                      |
| BJ13         | 152.563   | 23-Jun-13     | 602176  | 5732400  | 2                               | 21                      | Unk. pred likely wolf     |
| BL13         | 152.201   | 7-Jun-13      | 600919  | 5734059  | > 1                             | 10                      | Bacterial septicaemia     |
| BS13         | 152.644   | 28-May-13     | 600617  | 5732737  | < 1                             | 9                       | Unk. pred likely bear     |
| OR43         | N/A       | N/A           | N/A     | N/A      | UNK                             | UNK                     | Unknown                   |
| UN01         | N/A       | 18-Jun-13     | 619861  | 5724902  | > 1                             | <10                     | Unknown predator          |
| UN02         | N/A       | 9-Jun-13      | 601424  | 5732514  | 0.25                            | 7                       | Unk pred. or human-caused |
| UN03         | N/A       | 8-Oct-13      | 599092  | 5733038  | < 1                             | 130                     | Human-caused              |
| UN08 (OR10)  | N/A       | 17-May-14     | 601302  | 5734191  | < 0.5                           | 0                       | Stillborn                 |
| YM14         | 149.703   | 11-Sep-14     | 610673  | 5723918  | 4                               | 56                      | Bear                      |
| YF14         | 149.374   | 25-May-14     | 598734  | 5732917  | < 0.5                           | 4                       | Unknown predator          |
| YD14         | 149.622   | 1-Jun-14      | 618816  | 5723156  | < 0.5                           | 8                       | Bear                      |
| YY14         | 149.641   | 30-May-14     | 599954  | 5732551  | < 0.5                           | 5                       | Wolf                      |
| YC14         | 149.512   | 16-Jun-14     | 617882  | 5724815  | < 0.5                           | 22                      | Cougar                    |
| YB14         | 149.682   | 29-May-14     | 600410  | 5732669  | < 0.5                           | 4                       | Wolf                      |
| RA14         | 152.644   | 29-May-14     | 599618  | 5732305  | < 0.5                           | 3                       | Wolf                      |
| UN04         | N/A       | 27-May-14     | 600357  | 5734012  | < 1                             | 3                       | Unk. pred likely cougar   |
| YA14         | 149.482   | 3-Jun-14      | 598034  | 5733441  | < 0.5                           | 6                       | Bear                      |
| BQ14         | 152.253   | 4-Jun-14      | 619814  | 5723735  | < 0.5                           | 5                       | Bear                      |
| A114         | 149.222   | 19-Jun-14     | 595693  | 5732244  | 3                               | 19                      | Unknown                   |
| UN07 (YL102) | N/A       | 31-May-14     | 601142  | 5732678  | < 0.5                           | < 0.5                   | Bear                      |

| Calf ID      | Frequency | Date<br>Found | Easting | Northing | Est. Time Since<br>Death (days) | Estimated<br>Age (days) | Cause of Death          |
|--------------|-----------|---------------|---------|----------|---------------------------------|-------------------------|-------------------------|
| YQ14         | 149.834   | 5-Jun-14      | 595688  | 5732024  | 2                               | UNK                     | Unknown                 |
| RG14         | 152.503   | 7-Jun-14      | 600639  | 5734550  | < 1                             | 4                       | Unk. pred likely cougar |
| YZ14         | 149.461   | 11-Jun-14     | 595791  | 5736825  | 3                               | 11                      | Bear                    |
| YP14         | 149.151   | 13-Jun-14     | 600020  | 5732205  | < 0.5                           | 13                      | Bear                    |
| YT14         | 149.602   | 10-Jun-14     | 601028  | 5734146  | < 0.5                           | 4                       | Bear                    |
| RD14         | 152.313   | 14-Jun-14     | 601977  | 5731869  | < 0.5                           | 7                       | Bear                    |
| UN05         | N/A       | 16-Jun-14     | 617882  | 1572815  | < 1                             | 7-14                    | Cougar                  |
| UN06 (BL268) | N/A       | 22-Jun-14     | 620638  | 5722423  | < 1                             | 0.5                     | Bear                    |
| BM15         | 149.262   | 2-Jun-15      | 598522  | 5732877  | 7                               | 6                       | Bear                    |
| E115         | 152.503   | 17-Aug-15     | 621299  | 5722510  | UNK                             | 70                      | Unk. pred.              |
| I115         | 152.314   | 12-Jun-15     | 590783  | 5730863  | 1                               | 7                       | Unk. pred likely bear   |
| K115         | 149.262   | 19-Jun-15     | 603004  | 5733748  | < 1                             | 8.5                     | Bear                    |
| L115         | 149.763   | 28-Jan-16     | 600430  | 5732979  | UNK                             | 245                     | Unknown                 |
| RC15         | 149.513   | 16-Jun-15     | 596077  | 5734390  | 1                               | 13                      | Unk. pred likely cougar |
| RE15         | 152.042   | 12-Oct-15     | 601485  | 5734811  | UNK                             | 720                     | Unknown                 |
| RJ15         | 148.872   | 7-Jun-15      | 600048  | 5732944  | 5                               | 9                       | Bear                    |
| RK15         | 148.938   | 5-Jun-15      | 600902  | 5734075  | < 1                             | 9                       | Bear                    |
| RL15         | 148.522   | 15-Feb-16     | 600047  | 5734203  | UNK                             | 260                     | Unknown - dropped tag?  |
| RM15         | 148.368   | 11-Jul-15     | 599738  | 5736655  | UNK                             | 30                      | Bear                    |
| RN15         | 148.703   | 2-Jul-15      | 598868  | 5735994  | < 1                             | 34                      | Cougar                  |
| RO15         | 148.341   | 28-Jun-15     | 605109  | 5729692  | 17                              | 14                      | Unk. pred likely wolf   |
| RQ15         | 148.743   | 15-Jun-15     | 594558  | 5738073  | 1                               | 14.5                    | Bear                    |
| RR15         | 149.482   | 15-Oct-15     | 603295  | 5735017  | UNK                             | 139                     | Unknown                 |
| RV15         | 152.400   | 7-Jun-15      | 599828  | 5733127  | 2                               | 5.5                     | Bear                    |
| RW15         | 152.200   | 15-Jun-15     | 594558  | 5738073  | 1                               | 15.5                    | Bear                    |
| SS15         | 149.853   | 12-Jun-15     | 599153  | 5734048  | 1                               | 3                       | Bear                    |
| UN09 (OR63)  | N/A       | 14-Mar-15     | 597809  | 5734572  | < 1                             | 0                       | Aborted                 |
| YH15         | 149.422   | 2-Jul-15      | 612118  | 5724454  | < 0.5                           | 42.5                    | Bear                    |
| YS15         | 149.853   | 24-May-15     | 599967  | 5736564  | 1                               | 2                       | Bear                    |

**Appendix III-1:** Scat characteristics used for field identification.

| Species          | Diameter (cm) | Shape                                               | Other Characteristics                                                                                          | Reference                                      |
|------------------|---------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Grizzly<br>Bears | > 5           | Highly varied, often tubular and                    |                                                                                                                | Rezendes<br>1992                               |
| Black Bears      | 3.2 – 7.0     | unsegmented, or in piles of loose, unformed pellets | Often contains vegetation                                                                                      |                                                |
| Wolves           | 1.4 – 4.8     | Cond like mall                                      | Often contain large bone fragments and high hair content                                                       | Thompson<br>1952, Weaver<br>and Fritts<br>1979 |
| Coyotes          | 1.4 – 3.3     | - Cord-like, well<br>tapered at one end             | Often contain bone<br>fragments and high hair<br>content. Berries and other<br>vegetation sometimes<br>present | Rezendes<br>1992                               |
| Cougars          | 2.5 - 3.8     | - Well segmented, not                               |                                                                                                                | Elbroch 2003,                                  |
| Lynx/bobcat      | 1.6 – 1.9     | tapered                                             | Rarely contains bones                                                                                          | Rezendes<br>1992                               |

**Appendix III-2:** Scat collection data by predator family group.

| Predator<br>Group | Percent of total scats detected (%) | Scats detected/<br>km of transect | SD   | Range    |
|-------------------|-------------------------------------|-----------------------------------|------|----------|
| Canid             | 62                                  | 0.80                              | 0.64 | 0 - 2.93 |
| Ursid             | 30                                  | 0.46                              | 0.51 | 0 - 2.25 |
| Felid             | 8                                   | 0.10                              | 0.10 | 0 - 0.40 |