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ABSTRACT: We interpret a full year of high-frequency CO
measurements from a tall tower in the U.S. Upper Midwest
with a time-reversed Lagrangian Particle Dispersion Model
(STILT LPDM) and an Eulerian chemical transport model
(GEOS-Chem CTM) to develop top-down constraints on U.S.
CO sources in 2009. Our best estimate is that anthropogenic
CO emissions in the U.S. Upper Midwest in 2009 were 2.9 Tg,
61% lower (a posteriori scale factor of 0.39) than our a priori
prediction based on the U.S. EPA’s National Emission
Inventory for 2005 (NEI 2005). If the same bias applies across
the contiguous U.S., the inferred CO emissions are 26 Tg/y,
compared to the a priori estimate of 66 Tg/y. This discrepancy
is significantly greater than would be expected based solely on
emission decreases between 2005 and 2009 (EPA estimate: 23% decrease). Model transport error is an important source of
uncertainty in the analysis, and we employ an ensemble of sensitivity runs using multiple meteorological data sets and model
configurations to assess its impact on our results. A posteriori scale factors for the U.S. anthropogenic CO source from these
sensitivity runs range from 0.22 to 0.64, corresponding to emissions of 1.6−4.8 Tg/y for the U.S. Upper Midwest and 15−42
Tg/y for the contiguous U.S. The data have limited sensitivity for constraining biomass + biofuel burning emissions and
photochemical CO production from precursor organic compounds. Our finding of a NEI 2005 overestimate of CO emissions is
consistent with recent assessments for individual cities and with earlier analyses based on the NEI 1999, implying the need for a
better mechanism for refining such bottom-up emission estimates in response to top-down constraints.

1. INTRODUCTION

Carbon monoxide (CO) is a precursor of tropospheric ozone
and the dominant global sink of the hydroxyl radical (OH).1,2 It
is also widely used as a tracer for understanding sources of
other atmospheric species.3−5 Despite an expanding array of
atmospheric observations, bottom-up source estimates for
North America remain uncertain.6−10 Here, we present a full
annual cycle of continuous CO concentration measurements
from a tall tower in the U.S. Upper Midwest, and interpret the
data with a Lagrangian Particle Dispersion Model (STILT
LPDM) and with an Eulerian chemical transport model
(GEOS-Chem CTM) to develop new constraints on CO
emissions in 2009.
CO is emitted during the combustion of biomass and fossil

fuel and produced photochemically from the oxidation of
methane and other volatile organic compounds (VOCs).
Globally, direct emissions and secondary photochemical
production are thought to be of comparable importance.1,11

Other sources are comparatively small, and include emissions

from the oceans12 and from live and decaying plants.13,14 The
dominant loss process is oxidation by OH, and there is also a
minor sink due to soil uptake.15 The atmospheric lifetime of
CO is estimated at 1−3 months.16−18

Within North America, anthropogenic CO emissions have
been changing significantly in recent years, largely due to
improved vehicle emission control systems.19,20 Such trends
augment the difficulty in accurately quantifying emissions from
the bottom up. We present in this paper an analysis of CO
observations from the University of Minnesota tall tower Trace
Gas Observatory (KCMP tall tower), located in the Upper
Midwest of the United States. The tall tower measurements
provide high-resolution information with a large-scale footprint,
and we employ them here in an inverse analysis to develop a
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better understanding of CO source processes in the United
States for 2009. We provide top-down emission estimates for
the U.S. Upper Midwest, as well as for the contiguous U.S. as a
whole. The latter assume that any emission biases inferred
based on our measurements manifest across the entire a priori
inventory. Finally, we apply multiple transport models as well as
both Lagrangian and Eulerian simulation frameworks to assess
how transport uncertainties affect our top-down emission
estimates.

2. METHODS
2.1. Measurements. We measure CO, H2, and a suite of

VOCs at the University of Minnesota tall tower Trace Gas
Observatory (KCMP tall tower, 44.689°N, 93.073°W; 244 m
height, 534 m ASL), located approximately 25 km south of
Minneapolis-St. Paul, MN. Measurement details are provided in
the Supporting Information (SI), and more specifics regarding
the site description and sampling setup can be found in Hu et
al.3,21

Figure 1 shows the CO mixing ratios measured at the KCMP
tall tower during 2009.

2.2. STILT Model Description. We use the Stochastic
Time-Inverted Lagrangian Transport (STILT) model22−24 to
simulate CO mixing ratios at the KCMP tall tower for 2009.
STILT computes the upstream influence on a measurement site
by releasing a suite of particles from the receptor and following
their transport backward in time. Wind fields are provided by a
mesoscale model, driven by meteorological reanalysis data, and
interpolated to the explicit location of each particle. Turbulence
is simulated by a Markov chain process. The evolution of
particles backward in time maps the footprint function, which
when coupled to a surface flux quantifies the contribution of
each location in space and time to mixing ratios of an inert
tracer at the receptor. Figure 2 shows the averaged footprint
function at the KCMP tall tower for 2009 as derived by STILT.
For noninert tracers such as CO we must also account for the

chemical evolution of particles during transport.8 Here we
apply a first-order chemical loss to the simulated CO mixing
ratios based on hourly OH fields archived from a global
chemical transport model simulation25 (GEOS-Chem CTM,
see below; global mean OH is 1.2 × 106 molec/cm3).
Anthropogenic CO emissions over North America are based
on the EPA National Emissions Inventory (NEI)26 for 2005.
Emissions are hourly, account for variations between weekdays,
Saturdays, and Sundays, and are gridded to 0.036° horizontal
resolution; emission allocation is described by NOAA CSD.27

SI Figure S1 shows our implementation of NEI 2005 for this
work. Simulated emissions total 66.3 Tg/y for the contiguous
U.S., and 7.45 Tg/y for the U.S. Upper Midwest (here we

define the U.S. Upper Midwest as the region bounded by the
western border of North and South Dakota: 104.051°W; the
southern Iowa border: 40.588°N; the Canadian border; and
87°W). For comparison, the EPA NEI Emissions Trends
Summary (June 2013 version) estimates total nonfire U.S.
emissions at 76.7 Tg in 2005.28 Biomass burning and biofuel
emissions are taken from the Global Fire Emissions Database29

and from Yevich and Logan,30 respectively.
We use three meteorological data sets to drive the STILT

model and to assess the impact of transport uncertainty on our
analysis: EDAS (Eta Data Assimilation System) and NARR
(North American Regional Reanalysis) from the National
Centers for Environmental Prediction (NCEP), and BRAMS
(Brazilian developments on the Regional Atmospheric
Modeling System).31−33 The horizontal domains of these
three meteorological data sets are plotted in SI Figure S2. More
details regarding the STILT model and the meteorological
drivers used here are provided in the SI.
The STILT model was then used to simulate the CO mixing

ratios at the KCMP tall tower, based on the upstream surface
influence (computed using EDAS, NARR, or BRAMS
meteorology) coupled with the corresponding emission rates
and subsequent photochemical production and loss. Individual
sources (fossil fuel combustion, biomass & biofuel burning,
photochemical production, and the model boundary condition)
are tracked as separate tagged tracers in the simulation, with the
sum of these equal to the total ambient CO mixing ratio.

2.3. GEOS-Chem Model Description. We use the GEOS-
Chem 3D CTM25,34 to provide initial conditions, boundary
conditions and CO production and loss rates for the STILT
simulations. We also repeat our STILT inversion analysis using
CO concentration fields from three separate GEOS-Chem
simulations (carried out at 4° × 5°, 2° × 2.5°, and 0.5° ×
0.667° horizontal resolution) in order to examine how our
results vary with the configuration and resolution of the model
used for interpretation. The 4° × 5° and 2° × 2.5° simulations
were performed globally, while the 0.5° × 0.667° simulation
was run over the nested domain shown in SI Figure S2 (10° to
70° N; 140° to 40°W). In all cases CO emissions over North
America were implemented as described above for STILT.
More model details are provided in the SI. SI Figure S3 shows
boundary layer CO concentrations over North America at 0.5°
× 0.667° resolution as simulated by GEOS-Chem.

3. SIMULATION AND COMPARISON WITH
OBSERVATIONS
3.1. Mixing Height. The simulated tracer concentrations at

the KCMP tall tower, along with any corresponding flux
estimates, are directly sensitive to the model mixing height. In
this section we examine the mixed layer depth and diurnal
variability simulated at the KCMP receptor site using the above
meteorological data sets.
Figure 3 shows the mean diurnal cycle in mixing height for

each season at the KCMP tall tower based on the EDAS,
BRAMS, and NARR simulations. Also shown is the mixing
height from the GEOS-5 fields used to drive GEOS-Chem. As
we see, the EDAS-STILT, NARR-STILT, and GEOS-Chem
simulations provide a relatively consistent representation of the
maximum daytime and minimum nighttime mixing depths: the
difference in peak mixing height between EDAS-STILT or
NARR-STILT and GEOS-Chem ranges from 68 to 220 m,
whereas the mean mixing height at night (5−12 UTC; CST =
UTC − 6) differs between the two STILT simulations and

Figure 1. CO mixing ratios (2 h average) at the KCMP tall tower
during 2009. Measured values (in black) are compared to those
simulated by STILT (using EDAS meteorology, in green) and GEOS-
Chem (at 2° × 2.5° resolution, in red).
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GEOS-Chem by 0−108 m. On the other hand, BRAMS
consistently overestimates the depth of the daytime and
nighttime mixed layer relative to EDAS, NARR, and GEOS-5.
Miller et al.35 also found BRAMS mixed layer heights over the
U.S. to be high compared to those from the Weather Research
and Forecasting (WRF) model. We see in Figure 3 that there is

some discrepancy between the simulations in terms of the
timing of the growth, and especially the collapse, of the daytime
mixed layer. This leads to some large relative differences at
these times of day.
Figure 3 also compares the mixing heights from these various

simulations with values inferred from radiosonde observations
according to parcel theory.36 The radiosondes are launched
twice daily (0 UTC and 12 UTC) at Chanhassen MN, ∼25 km
northwest of the tower. During spring, summer, and fall, the
EDAS-STILT, NARR-STILT, and GEOS-Chem simulations
are better able to capture the observed early morning (12 UTC,
6 CST) mixing height than is BRAMS-STILT. Excluding
BRAMS-STILT, differences between simulated and measured
mixing heights at this time range from 11 to 70 m depending
on the season. The sonde measurements at 0 UTC/18 CST are
more complicated to interpret because the timing corresponds
closely with the evening collapse of the daytime boundary layer.
Since this timing as well as the depth of the daytime mixed layer
differ between the simulations, it is difficult to ascribe a
discrepancy with respect to the 0 UTC radiosonde observations
to one versus the other.
To further assess how uncertainty in model PBL dynamics

affects our simulation and inversion results, in addition to using
the separate meteorological data sets we carry out sensitivity
analyses using all data, only daytime data, and only nighttime
data. We also use the radiosonde-model mixing height
comparisons in constructing the observational error covariance
matrix for the inversion analysis described in Section 4.2.

3.2. Simulated CO Mixing Ratios. Figure 4 compares the
simulated and measured 2-hourly CO mixing ratios for year-
2009 at the KCMP tall tower, separated by day and night
(GEOS-Chem results are shown for the 2° × 2.5° case). Here,
we define daytime as 13−24 UTC (7−18 CST) and nighttime
as 1−12 UTC (19−6 CST); modifying these time windows

Figure 2. Average footprint function at the KCMP tall tower (indicated by the “+” symbol) for year-2009 as derived by STILT. Color scales differ
between the two panels.

Figure 3. Mean diurnal cycle of mixing height for each season in 2009
at the KCMP tall tower. Shown are estimates from four meteorological
data sets (EDAS, BRAMS, NARR, GEOS-5; colored lines) along with
values inferred from nearby radiosonde observations (points). Shaded
regions and error bars indicate one standard error about the mean.
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(e.g., 16−22 UTC or 17−21 UTC for daytime) did not yield
significantly different results. Only data below the monthly 98th
percentile are used to avoid undue influence from statistical
outliers.
Figure 4 shows some notable discrepancies between the

simulated and measured CO mixing ratios. The y-intercepts
and slopes from an orthogonal regression of the simulated
versus observed mixing ratios reveal a low bias in the model
background and a high bias in the model emission fluxes,
respectively, compared to both the daytime and nighttime
observations. Model:measurement slopes range from 1.5 (95%
confidence interval: 1.44−1.56) to 2.0 (1.91−2.09) during the
day and from 1.5 (1.44−1.56) to 1.8 (1.72−1.88) at night, with
day-night differences likely due to diurnal changes in the
accuracy of the modeled mixing height (Figure 3). All
comparisons are consistent, however, in revealing a CO
emission overestimate in the model.

4. CONSTRAINTS ON U.S. CO SOURCES
4.1. Bayesian Inverse Framework. We apply here a

Bayesian inversion37 to interpret the KCMP tall tower
measurements in terms of quantitative constraints on U.S.
sources of CO in 2009. The inverse method is a useful way to
test an emission inventory constructed using a bottom-up
approach, based on ambient measurements and a model
simulation driven by that inventory.8,38 Miller et al.8 carried out

an analysis of North American CO sources based on tall tower
measurements in Wisconsin over several months in 2004. We
build on that work here by (i) incorporating a full annual cycle
of observations; (ii) employing four separate meteorological
data sets (EDAS, NARR, BRAMS, GEOS-5), and both
Lagrangian and Eulerian simulation frameworks, to assess the
impact of transport error on the analysis; and (iii) extending
the analysis to 2009 to quantify the degree to which U.S. CO
emission reductions have continued in recent years.
The relationship between measured and simulated mixing

ratios at our tall tower receptor site can be expressed as follows:

εΓ= +y K (1)

where y is the vector of measured mixing ratios, Γ is the state
vector being optimized, K is the Jacobian matrix, defining the
sensitivity of the observation variables to the state variables, and
ε is the observing system error, which includes both
instrumental and model contributions. In our case, the columns
of K correspond to the tagged tracer mixing ratios for each of
the source types being optimized, while Γ consists of the a
posteriori scale factors for those source types.
Assuming Gaussian error distributions, the optimal solution

is that which minimizes J(Γ), representing the error-weighted
mismatch between the modeled and measured mixing ratios,
plus the error-weighted mismatch between the optimized and
the a priori scale factors:

Γ Γ Γ Γ Γ

Γ Γ

= − − + −
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In eq 2, Sε and Sa are the observational and a priori error
covariance matrices, and each element of Γa = 1. The solution
to ∇ΓJ(Γ) = 0 is then given by
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4.2. Construction of the State Vector and Error
Covariance Matrices. The observational error covariance
matrix includes instrumental error (Sinst) along with model
errors. The instrumental error variance is determined from the
detection limit (0.3 ppb) and the measurement uncertainty
(10% of the measured mixing ratio). Two primary sources of
model error arise from (i) uncertainty in the simulated mixing
height (Smh), and (ii) from the use of a finite number of
particles in the trajectory calculations (Sparticle). These two
uncertainties are related to the surface fluxes, so we estimate
each based on a relative error applied to the CO signal
associated with fossil fuel, biomass burning, and biofuel
emissions. For Sparticle we employ a relative error of 0.13,
following earlier work.8,22 We estimate Smh based on the
radiosonde comparisons described in Section 3.1. Specifically,
the relative error associated with the model mixing height is
taken as the mean of |Hobs,i − Hmodel,i|/Hobs,i, where Hobs,i and
Hmodel,i represent the observed and modeled mixing heights at
time i. Since the first vertical level of observation in the
sounding data is generally ∼280 m, we exclude mixing heights
<200 m from the calculation of Smh (these data are still
included in the inversion analysis). This leads to a relative error
of 0.56 for the EDAS meteorological fields, which we employ in
our best-estimate optimization (see following section).
We estimate the a priori errors at 100%, based on previous

assessments of bottom-up CO emission errors for North
America,7−9 and set the off-diagonal elements of Sa and Sε to
zero, so that errors are assumed to be uncorrelated. Later we

Figure 4. Comparison between simulated and measured CO mixing
ratios at the KCMP tall tower during 2009. Shown are model results
from STILT using the EDAS, BRAMS, and NARR meteorological
fields, and from GEOS-Chem, for day (top) and night (bottom). Data
shown are 2 h averages and exclude statistical outliers (>98th
percentile for each month). Uncertainty values indicate 95%
confidence limits.
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conduct some sensitivity studies to test how our optimization
results depend on the particular construction of Sε and Sa.
These sensitivity runs include simulations in which Sε and Sa
are computed by maximum likelihood estimation (MLE).39 In
this case Sε and Sa are inferred from the atmospheric data
themselves, by iteratively minimizing a cost function to derive
their most probable values based on the observed CO
concentrations and the a priori model concentrations. The
resulting diagonal elements of the covariance matrices based on
MLE are 229.85 ± 5.55 ppb2 and 0.42 ± 0.30, respectively for
the EDAS-STILT simulation.
We tested several combinations of CO sources to include in

the state vector for optimization. Each candidate state vector
was then employed for a suite of STILT simulations using
different meteorological fields (EDAS, BRAMS, and NARR)
and time periods (daytime-only; nighttime-only; both) in order
to assess which source combination could be resolved by the
observations. We first considered a 4-element state vector,
composed of scale factors for North American fossil fuel
emissions, North American biomass burning + biofuel
emissions, background, and photochemical production. For
each of the test simulations we then calculated the averaging
kernel matrix A, quantifying the sensitivity of the retrieved
emissions to their true values:

= − ̂ −A I SSa
1

(4)

where Ŝ is the a posteriori error covariance matrix.
Results are shown in SI Figure S4 for the EDAS-STILT

simulation (day + night). Averaging kernel values for the fossil
fuel and background categories are >0.8, while that for biomass
burning + biofuel is close to 0. There is also only weak
sensitivity to the photochemical production term. Averaging
kernels derived using the other meteorological data sets, and
using daytime-only or nighttime-only data, exhibit the same
general pattern. We therefore include North American fossil
fuel emissions and the CO background as the two elements to
be optimized in our state vector. Including the CO background
in the state vector is also important to prevent any model bias
in OH or in upwind CO sources from being aliased with a bias
in domestic emissions. We further perform a sensitivity
inversion using a 3-element state vector that includes North
American fossil fuel emissions, the CO background, and CO
photochemical production, to test for any conflation between
these source categories in our baseline analysis.
For the purposes of the source inversions we define

‘background CO’ as that which originates outside the modeling
domain (or at the termination of a back-trajectory). Since the
domain varies with model configuration (as shown in SI Figure
S2), the precise composition of the CO background will vary
slightly as well. For instance, a model simulation over a larger
domain will include some photochemically produced CO that
would have occurred outside the boundary of a smaller domain,
and which would in that case have been classified as
“background”.
4.3. CO Optimization Results. Table 1 shows the

optimization results for anthropogenic CO emissions and for
the CO background. Because Bayesian a posteriori error
estimates can be unreliable indicators of the true uncertainty in
a solution,40−43 we instead employ a wide range of sensitivity
studies designed to probe the degree of uncertainty in our
findings. These include STILT simulations using EDAS,
BRAMS, and NARR meteorology; daytime-only, nighttime-
only and all data; a 2-element (fossil fuel, CO background)

versus 3-element (fossil fuel, CO background, CO photo-
chemical production) state vector; using varying assumptions
for Sa and Sε; and inversions based on GEOS-Chem simulation
results (4° × 5°, 2° × 2.5°, 0.5° × 667°). As these optimizations
are done on an annual basis (i.e., the seasonality in the bottom-
up inventory is treated as a hard a priori constraint), we also
perform inversions using only warm-season (May−September)
and only cold-season (November−February) data to test for
any seasonally dependent bias, as was found previously over
North America by Kopacz et al.44 Averaging kernels for all
optimization results in Table 1 are shown in SI Figure S5.
We employ as our best-estimate optimization the EDAS-

STILT simulation using all data (daytime and nighttime; O1),
since the EDAS mixing depths show better agreement with
radiosonde observations than do the BRAMS mixing depths

Table 1. A posteriori Scale Factors for the CO Inversion,
And Reduction of the Cost Function for the Best-Estimate
Simulation (O1) and Various Sensitivity Studies (O2−O20)

a posteriori scale factor

simulation

U.S.
fossil
fuel

CO
background

CO
photochemical
production

cost function
reduction

(%)

O1: EDAS 0.39 1.30 57
O2: EDAS, 3-
element state
vector

0.37 1.25 1.05 63

O3: EDAS,
daytime only

0.57 1.16 45

O4: EDAS,
nighttime only

0.44 1.26 48

O5: EDAS,
increased Sa

a
0.25 1.40 70

O6: EDAS,
decreased Sa

a
0.64 1.12 35

O7: EDAS,
increased Smh

b
0.64 1.12 35

O8: EDAS,
decreased Smh

b
0.26 1.40 69

O9: BRAMS 0.36 1.25 45
O10: NARR 0.33 1.34 60
O11: EDAS,
MLEc

0.24 1.41 70

O12: EDAS, MLE,
Sa + SDd

0.22 1.43 72

O13: EDAS, MLE,
Sa − SDd

0.35 1.33 61

O14: EDAS, MLE,
Sε + SDd

0.24 1.41 70

O15: EDAS, MLE,
Sε − SDd

0.24 1.41 70

O16: EDAS, May-
Sept

0.56 1.26 40

O17: EDAS, Nov-
Feb

0.63 1.07 43

O18: GEOS-
Chem, 4° × 5°

0.41 1.27 43

O19: GEOS-
Chem, 2° × 2.5°

0.29 1.32 69

O20: GEOS-
Chem, 0.5° ×
0.667°

0.25 1.33 75

aA priori uncertainty is decreased or increased by a factor of 2.
bMixing height uncertainty is decreased or increased by a factor of 1.5.
cA priori error covariance and observational error covariance are
calculated by maximum likelihood estimation.39 dMaximum likelihood
covariance matrices are increased or decreased by their associated
uncertainty.
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(Figure 3), and the simulated CO mixing ratios have higher
correlation with the observations than is achieved using NARR-
STILT (Figure 4). The GEOS-Chem simulations also yield
high correlation with the observed mixing depths and CO
concentrations, but we employ these mainly as a secondary and
independent metric to evaluate the STILT results.
The KCMP tall tower observations clearly reveal an

overestimate of U.S. anthropogenic CO emissions in the NEI
2005 data set. Our best-estimate a posteriori scale factor for this
source is 0.39, with a range of 0.22−0.64 for the various
sensitivity analyses. Our results also imply a model under-
estimate of the CO background as simulated by GEOS-Chem,
with an a posteriori scale factor of 1.30 (1.07−1.43). An
underestimate of the CO background indicates either a sink
(model OH) overestimate, or else an underestimate of CO
emissions upwind of the U.S.
When we perform separate optimizations for the May−

September and the November−February time-frames, we do
derive a slightly larger adjustment to the a priori in the warm
season (scale factor of 0.56, compared to 0.63 in the cold
season). However, in both cases the a posteriori result falls
within the range bounded by the other (annual) sensitivity
analyses, preventing us from detecting a seasonally specific bias
in the prior inventory.
Figure 5 compares the CO mixing ratios measured at the

KCMP tall tower with those from the best-estimate a posteriori
simulation. The regression has a slope of 1.11 (1.08−1.14), a

y-intercept of −12 ppb (−16 to −8), and a higher correlation
than the a priori regression. The fact that the slope is greater
than 1.0 indicates that the high bias in the model simulation is
not fully removed; the optimization is constrained to a degree
by the error covariance matrices Sa and Sε. Increasing the a
priori error estimate, or decreasing the observational error
estimate, leads to a lower scale factor for fossil fuel emissions
and reduces the regression slope (e.g., O5, O8, O12; Table 1).
The cost function is reduced by 57% through the best-estimate
optimization, compared to 35−75% for the different sensitivity
runs shown in Table 1.

5. CO SOURCES IN THE UNITED STATES

Our findings show that CO emissions within the KCMP tall
tower footprint in 2009 are substantially overestimated using
the EPA’s NEI 2005. Excluding wildfires, our a priori
implementation of the NEI 2005 yields anthropogenic CO
emissions of 7.5 Tg for the U.S. Upper Midwest in 2005. By
contrast, our best-estimate optimization indicates that anthro-
pogenic CO emissions were only 2.9 Tg in that region during
2009, with an uncertainty range from the sensitivity runs of
1.6−4.8 Tg.
These findings are consistent with recent analyses in other

regions: airborne measurements over Sacramento CA10 and
Houston, TX6 concluded that the NEI 2005 overestimates CO
emissions by 40−100% for those cities in 2009 and 2006,
respectively. If our findings based on measurements in the U.S.
Upper Midwest reflect a bias that manifests across the NEI
inventory nationally, then the resulting flux for the contiguous
United States would be 26 Tg/y, with an uncertainty range of
15−42 Tg/y.
Previous assessments of the NEI 1999 CO emissions also

found evidence of a significant overestimate.7−9,45 For example,
Hudman et al.7 applied aircraft measurements and the GEOS-
Chem CTM to deduce that summertime anthropogenic CO
emissions over the U.S. in 2004 were 60% lower than predicted
by the NEI 1999. If the same bias were to apply year-round, the
implied U.S. anthropogenic CO source would be 37 Tg/y (in
2004), 42% higher than our best estimate for 2009 of 26 Tg/y.
The most recent EPA NEI Emissions Trends Summary28

(June 2013 version) estimates that U.S. anthropogenic
nonwildfire CO emissions dropped 19% between 1999 and
2005 (from 94.4 to 76.7 Tg/y), and an additional 23% between
2005 and 2009 (to 59 Tg/y). A value of 59 Tg in 2009 is still a
factor of 2 larger than our best estimate for that year of 26 Tg.
The ensemble of sensitivity runs with varying meteorological
inputs and error estimates result in 2009 U.S. CO emissions
that are between 25% and 72% of the bottom-up EPA
Emissions Trends estimate for the same year.28

6. DISCUSSION

We presented a full year of high-frequency CO mixing ratio
measurements from a tall tower in the U.S. Upper Midwest,
and applied a Lagrangian Particle Dispersion Model (STILT
LPDM) and an Eulerian chemical transport model (GEOS-
Chem CTM) in an inverse modeling framework to interpret
the data in terms of their constraints on CO sources. We
employed three separate meteorological data sets (EDAS,
BRAMS, NARR) to drive STILT and to assess the impact of
transport error on the simulations. Based on a seasonal and
diurnal analysis of radiosonde observations near the site, and
the fidelity of the various simulations in capturing the observed

Figure 5. Linear regressions between the measured and simulated CO
mixing ratios for the (a) a priori and (b) best-estimate a posteriori
simulations (all data). Uncertainty values indicate 95% confidence
limits.
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variability in atmospheric CO concentrations, we selected the
EDAS fields for our best-estimate simulation.
An orthogonal regression of the simulated versus observed

CO mixing ratios for 2009 revealed a clear high bias in the
model, with slopes of 2.0 (daytime data) and 1.8 (nighttime
data) for the EDAS-STILT simulation. The bias reflects an
overestimate of anthropogenic CO emissions in the footprint of
the KCMP tall tower, which are implemented in the model
based on the U.S. EPA’s National Emission Inventory for 2005
(NEI 2005).
We then carried out a Bayesian optimization to derive CO

emissions for the U.S. Upper Midwest that are most consistent
with our observations and with prior constraints. Our best
estimate is that anthropogenic CO emissions in this region
were 2.9 Tg in 2009. A suite of sensitivity inversions with
varying meteorological inputs and error estimates give a range
of 1.6−4.8 Tg. If these findings for the U.S. Upper Midwest
reflect a consistent bias across the NEI inventory, then the
resulting best-estimate anthropogenic CO flux for the
contiguous U.S. is 26 Tg in 2009, with an uncertainty range
of 15−42 Tg.
Our best-estimate optimization implies CO emissions in

2009 that are 61% lower than our a priori based on an
implementation of NEI 2005. However, U.S. CO emissions
have been decreasing significantly in recent years. For example,
Warneke et al.20 estimated that CO mixing ratios in the Los
Angeles basin have been decreasing at an annual rate of about
7.5%/year. The EPA NEI 200846 inventory has recently been
implemented in GEOS-Chem, and the corresponding year-
2008 CO emissions are 5.7 Tg/y for the U.S. Upper Midwest
and 48.7 Tg/y for the contiguous U.S. (SI Figure S6), ∼25%
lower than the NEI 2005-based prior used here. Similarly, the
U.S. EPA Emissions Trends Summary28 estimates that
anthropogenic CO emissions in the U.S. decreased by 23%
between 2005 and 2009. The resulting bottom-up flux estimate
for nonwildfire anthropogenic CO emissions in 2009 (59 Tg) is
still outside the uncertainty range implied by our sensitivity
inversions based on the tall tower measurements (15−42
Tg/y), and a factor of 2 larger than our best-estimate value.
As another point of comparison, the EDGARv4.2 inventory47

provides global CO emission estimates at 0.1° × 0.1° resolution
on a yearly basis from 1970 to 2008. These flux estimates
(shown in SI Figures S7 and S8) are lower than the NEI values,
and decline from 6.0 to 5.2 Tg/y (U.S. Upper Midwest) and
from 52.0 to 44.9 Tg/y (contiguous U.S.) between 2005 and
2008, the latest year available.
The 2-fold discrepancy that we find relative to NEI 2005 is

similar to findings for the NEI 1999 based on a range of
studies.7−9,45 The fact that the bias appears to persist in the
NEI 2005 suggests the need for a better mechanism for refining
these bottom-up estimates in response to atmospheric
observations and the scientific literature. Pending updates to
the NEI system for the forthcoming version48 may help in
addressing this.
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