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Abstract
Males in many species invest substantially in structures that are used in com-
bat with rivals over access to females. These weapons can attain extreme
proportions, and have diversified in form repeatedly. I review empirical lit-
erature on the function and evolution of sexually selected weapons to clarify
important unanswered questions for future research. Despite their many
shapes and sizes, and the multitude of habitats within which they function,
animal weapons share many properties: they evolve when males are able to
defend spatially-restricted critical resources, they are typically the most vari-
able morphological structures of these species, and this variation honestly
reflects among-individual differences in body size or quality. What is not
clear is how, or why, these weapons diverge in form. The potential for male
competition to drive rapid divergence in weapon morphology remains one of
the most exciting and understudied topics in sexual selection research today.
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INTRODUCTION
Sexual selection is credited with the evolution of nature’s most extravagant structures, and these
include showy male adornments that are attractive to females (ornaments), and an arsenal of
outgrowths that function in male-male combat (weapons) (Darwin 1871). Both types of structures
arise as a result of selection generated by competition over access to reproduction (Darwin 1871;
West-Eberhard 1979, 1983), but the underlying mechanisms of sexual selection, female mate
choice and male-male competition, differ in interesting ways that are likely to affect the evolution
of these two categories of traits.

Early reviews of sexually selected traits tended to give equal weight to both ornaments and
weapons (Darwin 1871, Davitashvili 1961, Richards 1927, Shine 1989), but modern considera-
tions have focused primarily on ornaments (Andersson 1994, Andersson & Iwasa 1996). This is
especially apparent for theoretical treatments of sexual selection, and genetic models for the evolu-
tion of sexually selected structures are almost entirely built around the mechanism of female mate
choice (Andersson 1987, Mead & Arnold 2004; S.M. Shuster and D.J. Emlen, in preparation).
Consequently, we lack an explicit theoretical framework for considering weapon evolution, and
there has been no attempt to systematically review the diversity of animal weapons.

Here, I review the empirical literature on the evolution of enlarged male weapons of sexual
selection. In the past few decades a great deal has been learned. Most of the relevant animal clades
now include species that have been studied rigorously in the field, and for which we now have
an appreciation for the biological contexts and functions of male weapons. Several of these same
clades have working phylogenetic hypotheses that have permitted comparative tests of alternative
scenarios of weapon evolution.

The purpose of this review is to illuminate the stunning breadth of taxa in which weapons
have arisen, and to highlight the myriad forms in which these structures have existed. I use this
broad taxonomic review to identify common themes—critical aspects of the natural histories and
ecologies of species that frequently accompany the evolution of exaggerated weapons, and to
identify important unanswered questions for future research. The central conclusion from this
study is that animal weapons have diverged as dramatically and as rapidly as ornaments, despite the
fact that these structures often experience no discernable female mate choice. This observation
alone provides ample raw material for a reappraisal of our understanding of the mechanisms by
which sexual selection generates nature’s most spectacular forms.

THE MAJOR RADIATIONS OF ANIMAL WEAPONS1

Arthropods: Trilobites and Crustacea

Trilobites were among the dominant invertebrates in Paleozoic seas (∼543–251 Mya), and they
exhibited a bewildering array of exoskeletal morphologies. Ordovician trilobites included numer-
ous species with long spines that could exceed the length of the body, that either trailed backward
from their sides or projected dorsally and forward (Figure 1a) [see the Supplemental Litera-
ture Cited for numbered references (Follow the Supplemental Material link from the Annual
Reviews home page at http://www.annualreviews.org): 73, 88, 107, 150, 264]. Some of these pro-
jections, no doubt, served to protect these animals from predators (9, 84, 89, 191, 244), but many of
these spines—especially the long anterior projections—were evidently used in intraspecific male

1For this section, numbered references are provided in the Supplemental Literature Cited. Follow the Supplemental
Material link from the Annual Reviews home page at http://www.annualreviews.org
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Figure 1
Weapons in Arthropods I. Weapons are shown in black. (a) Trilobites. All trilobite species are extinct. 1, Zlichovaspis rugosa;
2, Walliserops trifurcatus; 3, Bulbaspis mirabilis; 4, Lonchodomas volborthi; 5, Cyphaspis sp.; 6, Kingaspis sp.; 7, Ceratarges sp.; 8, Psychopyge
elegans; 9, Dicranurus monstrosus; 10, Dicranurus monstrosus (front view); 11, Morocconites malladoides. (b) Amphipods and isopods.
1, Ericthonius difformis; 2, Deutella venenosa; 3, Bregmotypta sp.; 4, Geocerceis sp.; 5, Jassa herdmani; 6, Caprella verrucosa; 7, Microdeutopus
gryllotalpa (gnathopod only); 8, Cymodopsis impudica; 9, Cilicaea tasmanensis; 10, Ceratocephalus grayanus; 11, Caprella mutica;
12, E. punctatus; 13, Platynympha sp.; 14, C. impudica; 15, Isocladus armatus; 16, Paracassidina cervina; 17, Paracerceis sp. (c) Decapods.
1, Callianassa californiensis; 2, Macrobrachium sp.; 3, C. gigas; 4, Eunephrops bairdii; 5; Myra fugax; 6, Calappa calappa; 7, Neoglyphea
inopinata; 8, Uca pugnax; 9, Platylambrus granulata; 10, Homarus gammarus; 11, Pseudocarcinus gigas; 12, Callianassa australiensis.
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combat (e.g., the family Raphiophoridae; 62, 150). These structures were highly sexually dimor-
phic, unusually diverse in shape and location (across species), unusually variable in size (within a
species), and these anterior spines did not become enlarged in males until the end of development
(35, 150): all typical characteristics of sexually selected weapons. What critical resources these
males defended is unknown, though many species apparently aggregated into groups (203, 245,
246) and excavated burrows (83, 90, 247). These are surprisingly common features of taxa with
enlarged male weapons (see below).

Within the Crustacea, weapons have arisen in many groups, including amphipods,
isopods, stomatopods, and especially the decapods. Amphipod weapons include enlarged claws
(gnathopods), and several genera of isopods produce rigid cuticular extensions (“bosses”) that
extend from their anterior or posterior ends, or elongated movable appendages (uropods)
(Figure 1b). In both groups these structures are sexually dimorphic (41, 47, 48, 129, 137, 159,
205) and used to guard females (22, 64, 141, 231, 250, 257) or burrows or cavities used by females
(21, 41, 47, 232–235). Stomatopods (mantis shrimp) are highly aggressive and defend burrows or
cavities in rock or coral, and many species have enlarged raptorial appendages that they use to
smash both prey and rival individuals (32, 39). Stomatopod weapons can inflict lethal blows (32,
202a) and individuals with the largest body and weapon sizes win (31).

The most diverse and extreme crustacean weapons are the enlarged, often highly sexually
dimorphic chelipeds of many decapods (shrimp, crayfish, and crabs) (Figure 1c). Chelipeds are
often used by males in contests over females, or over food or burrows used by females (11, 37, 38,
52, 130, 151, 160, 162, 173, 220), and they can be used either as weapons or as visual displays in
agonistic encounters (123, 220, 242, 271).

Male fiddler crabs (Uca) produce the most dramatic weapons ever recorded (claws comprising
50% of total body weight; 37, 53, 162) and males in the most highly armamented species use these
claws in contests over burrows along the tidal margins of beaches (38, 39, 138). Females use male
claws and associated visual displays (e.g., waving) to assess males (206), and claws in many species
likely function as both weapons and ornaments (18). In most crustaceans studied, males with the
largest weapons win contests over resources or females most frequently (38, 160, 240, 242).

Arthropods: Arachnids and Insects
Males with weapons have been studied in mites (213), spiders (93), amblypygids (261–263), and
pseudoscorpions (274), as well as in most of the principal orders of insects. In males of some
Australian thrips (Thysanoptera), distended forelegs and spines are used in lethal contests over
oviposition sites used by females (55), and male New Zealand stone and tree wetas (Orthoptera)
use their enlarged mandibles in fights over harems of females (99, 131, 146, 147, 152, 189).

Features that are enlarged in males and are used as weapons include the cerci (“forceps”) in
many earwigs (Dermaptera) (Figure 2a) (63, 188, 212, 236), and the hind femora or tibiae of
leaf-footed bugs (Hemiptera: Coreidae) (Figure 2b) (71, 92, 180, 182). In many coreid species,
males use hind legs in visual displays during agonistic encounters (181, 184; C.W. Miller, personal
communication). When competitions escalate, males turn end-to-end, wrap their hind legs around
each other’s abdomens, and squeeze in intense bursts (71, 183).

Among the few enlarged sexually selected weapons in the Hymenoptera, the most extreme are
the long, sometimes branched, facial outgrowths in African tusked wasps (Synagris) (Figure 2c),
which are used as visual signals and weapons in fights over mud burrows constructed by females
on the undersides of leaves (17, 165). Specialized fighter males occur in some andrenid (57, 58)
and halictid (157, 158) bees, many fig and parasitic wasps (1, 16, 51, 54, 91), and a few ants (e.g.,
Cardiocondyla) (109, 110, 248), in which males fight to the death over emerging female brood mates
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in their natal nests. All of these species are unusual within their respective clades in having two
discrete male types: typical dispersing males, and fighter males who lack wings, but have expanded
heads and large mandibles.

Long “antlers” that extend from the cheeks, which can be curved, branched, or palmate, have
evolved in at least five families of flies (Diptera), and eyestalks have arisen in eight (Figure 2d )
(103, 177, 227, 265). The males of all species of Phytalmia (Tephritidae) possess antlers, which
are the most divergent morphological traits between these species (177, 178, 265). In the four
species studied, males defend oviposition microsites on the surfaces of decaying wood (65, 190)
and use their antlers as visual signals and in escalated fights that proceed through species-specific
sequences of stereotyped interactions (e.g., rearing up on hind legs with locked antlers; 65, 265).
In the mostly paleotropical Diopsidae, both sexes have eyestalks, but disproportionately long male
eyestalks have arisen at least four times (10). In Cyrtodiopsis whitei, females coalesce at night on
rootlets hanging from the banks of small streams. Males with the largest body sizes and widest
eyestalks are best able to guard these nightly aggregations (28, 201) and sire the greatest number of
offspring (30, 166). Defendable aggregations of females occur in most of the studied species with
extreme sexually dimorphic eyestalks, but in none of the four studied monomorphic species (28,
265). In addition, females of sexually dimorphic (but not monomorphic) diopsids use eyestalks
as a basis for mate choice (28, 29, 266, 269), and they derive an unusual genetic benefit from
this preference: in addition to being in the best overall condition (60), males with the longest
eyestalks appear to possess a suppressor to an X-linked meiotic drive element that can avoid
producing extremely female-biased offspring sex ratios (139, 268).

Considering the astonishing diversity of beetles (with over 120 families and more than 330,000
species; 125), it is not surprising that exaggerated male weapons have arisen in many lineages.
The champions of weaponry are the scarabs (superfamily Scarabaeoidea) (8, 59), which include
approximately 14 recognizable families with an estimated 35,000 extant species worldwide that
feed as larvae on microbially-enriched humus, rotting wood, animal remains, fungi, plant roots,
and herbivore dung (25, 102, 224).

Almost all species of Lucanidae (stag beetles) (Figure 2e) have enlarged mandibles in males
(119, 126, 128, 143, 144, 192, 221, 229, 251). A recent molecular phylogeny suggested that ancestral
lucanids had weakly-developed mandibles with minimal sexual dimorphism, that exaggerated male
mandibles arose at least twice, and that male mandible size was subsequently reduced at least once
(119). Males in the most dimorphic species fight over access to feeding sites visited by females
(sap flows on tree trunks) (108, 119, 127, 175, 192, 229), whereas males of species with weakly
developed mandibles generally wait for females at oviposition sites such as the insides of hollow
trees or underneath logs and decayed wood (6, 7, 119, 192). This association suggests that highly
localized and defendable resources (e.g., sap flows), possibly combined with unrestricted terrain for
fighting (the exposed sides of trees), may provide opportunity for males to derive fight-performance
advantages from elaborate mandibular weapons, a hypothesis supported by the reduction of male
mandibles in Perisognathus angularis, which appears to have shifted contest locations from sap sites
to the insides of hollow trees (119).

The weapons most typical of scarabs are horns, which are rigid, hollow outgrowths of the body
wall, often with teeth, branches, and/or dense rows of setae (8, 67). Scarab horns are generally (but
not always) confined to males, and these horns can reach truly extraordinary proportions. Although
almost every scarab family or subfamily has at least a few species with horns (78), the vast majority
of horned species are confined to four clades, considered to represent independent origins of these
weapons (8, 59; but see 78): the Geotrupidae, Cetoniinae, Scarabaeinae, and Dynastinae.

Very little is known about the function of geotrupid and cetoniid horns. Most geotrupids have
head or thorax horns in males (and in some cases also in females; 121, 122) (Figure 3a), and
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one clade in the Cetoniinae is exceptional in having enormous, often branched, cephalic male
horns (Figure 3b) (115, 155, 161). There is evidence from a few species that males guard localized
resources where females are present [e.g., tunnels (Geotrupidae) or branches (Cetoniinae); 115,
120, 200].

The Scarabaeinae, or “dung beetles,” today comprise more than 230 genera and 5000 species
(104, 106). Although these beetles may have specialized originally on dinosaur dung, they di-
versified with the mammal radiation (36, 61). Some species have now also colonized dung from
other vertebrates and invertebrates, as well as carrion, fungi, and rotting fruit (106). Thousands
of scarabaeine dung beetles produce horns, and these horns appear to have been gained and lost
repeatedly within this clade (79, 80). Horns of extant species occur on at least five different body
regions and display a remarkable diversity of shapes and sizes (Figure 3c). In all horned dung
beetle species studied to date, males use horns inside burrows, in contests over reproductive access
to females. Both body size and horn length confer significant performance advantages to fighting
males (76, 185, 198, 204, 215), and this can translate into fertilization success (124). In most species,
fighting dung beetles brace themselves inside tunnels and use their horns to block passage of rival
males into the tunnel, as well as to twist, pry, or otherwise dislodge opponents—all functions of
horns that appear to derive in part from the confined nature of the tunnels, and suggesting that
the location of contests in restricted spaces may have favored the enlargement of male weapons
(67, 77, 79, 80). In a recent test of this idea, Emlen & Philips (80) showed that across a phylogeny
of 45 genera of dung beetles, gains of enlarged horns in males were confined to lineages that
also employed tunneling behavior, and two lineages that subsequently lost male horns also had
abandoned tunneling behavior (these males fight above ground while rolling balls of dung away
from the source). Interestingly, females of a number of dung beetle species also produce horns,
which in some species are used in female-female contests inside burrows (215; D. Emlen and J.
Marangelo, unpublished data).

The most famous of the horned beetles are the rhinoceros, Hercules, and elephant beetles
(Dynastinae) (Figure 3d ), comprising over 1500 primarily tropical species (69, 70, 81, 154, 216).
Although rhinoceros beetles have been prized by collectors for centuries, the long larval develop-
mental periods (often 2 or 3 years), relatively brief adult lifespans, and nocturnal habits of many
species have made rigorous field studies of their behavior difficult, but males of a few species are
known to fight over burrows, sap flows, and other localized resources attended by females (56, 66,
67, 69, 116, 238, 241; A. King, unpublished results). In Trypoxylus dichotomus, male fighting and
mating success are positively correlated with body and horn size (116).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 2
Weapons in Arthropods II. (a) Dermaptera. 1, Neolobophora ruficeps; 2, Ancistrogaster championi; 3, Labia championi; 4, Opisthocosmia
americana (side view); 5, Forficula sp.; 6, L. arcuata; 7, O. americana; 8, A. variegatus; 9, F. macrobasis; 10, F. tomis. (b) Coreidae
(Hemiptera). 1, Thasus acutangulus; 2, Acanthocephala declivis; 3, Capaneus sp. 1 (head and thorax only); 4, Capaneus sp. 2; 5, Pternistria sp.;
6, Anoplocnemis curvipes; 7, Esparzaniella reclusa; 8, Romoniella perfecta. (c) Miscellany. 1, pseudoscorpion (Dinocheirus arizonensis);
2, dobsonfly (Corydalus cornutus); 3, 4, tusked wasps (Synagris fulva, S. cornuta); 5, tusked weta (Anisoura nicobarica); 6, spider (Linyphia
triangularis); 7, thrips (Macrophthalmothrips kiesteri); 8, whipscorpion (Rowlandius longipalpus). (d ) Diptera. 1, Sessilina nigrilinea;
2, Phytalmia alcicornis; 3, P. robertsi; 4, P. alcicornis (side view); 5, Paramyiolia nigricornis; 6, Phytalmia antilocapra; 7, P. mouldsi;
8, P. cervicornis; 9, Cyrtodiopsis dalmanni; 10, Giraffomyia sp.; 11, Wawu queenslandensis; 12, Paramyiola rhino; 13, Strauzia intermedia.
(e) Stag beetles (Scarabaeoidea: Lucanidae). 1, Cyclommatus elaphus; 2, Odontolabis latipennis; 3, Prosopocoilus serricornis; 4, Hexarthrius
mandibularis; 5, P. bison; 6, Dorcus titanus; 7, P. giraffa; 8, D. alcides; 9, Aegus punctipennis; 10, Cyclommatus giraffa; 11, Mesotopus tarandus;
12, Colophon primosi; 13, P. sericeus; 14, Weinreichius perroti; 15, Rhaetulus speciosus; 16, Sphaenognathus feisthameli; 17, Chiasognathus
grantii; 18, O. femoralis; 19, Chiasognathus grantii (side view).
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In beetles other than scarabs, mandibular weapons have arisen at least twice in the Staphylinidae
(87, 105), and occur also in some Cerambycidae, Ciidae, and Tenebrionidae (Figure 3e). In all of
these cases, males guard mating sites on localized resources or in galleries inside fungi or rotting
wood (67, 100, 145).

Male baradine weevils, with projecting, ventral, paired horns, fight over females’ drilling ovipo-
sition holes in the stems of oil palms (72). Males in several brentid weevils have elongated snouts
that are used to guard ovipositing females (140, 179). In the chrysomelid genus Acromis, males have
lateral elytral and pronotal projections, which they use as forceps to grasp and remove rival males
from hostplant vines (34, 272; P. Trillo, personal communication), and males of the chrysomelid
Doryphora sp. have a ventral horn which is used to pry rival males from females (68). In the forked
fungus beetle Bolitotherus cornutus (Tenebrionidae), males with the longest thoracic horns win
disproportionate access to females (49, 50), and females appear to prefer males with long horns
(24). The forelegs of male harlequin beetles (Acrocinus longimanus; Cerambycidae) (Figure 3e) are
among the most extreme weapon forms in any insect (with a reach that can exceed 30 cm in width
and be three times the male’s body length), and are used in grappling contests over sap oozes on
fig trees where females feed, mate, and lay eggs (275).

Vertebrates: Fish, Amphibians, and Reptiles
Jawless fish (Galeaspida) and sharks each radiated in the Devonian (∼400 Mya) and included
many species with odd projections that may have functioned as weapons (Figure 4a) (45, 164,
167, 168). Unicornfish, swordfish, paddlefish, and sawfish all produce bizarre structures that look
like weapons (Figure 4a), but the functions of these structures are not well understood. Sawfish
“saws” are relatively longer in males (252), and unicornfish protuberances are used as visual signals
in male contests (5) and appear to have been gained multiple times (20). Spawning salmonid males
have a large hump on their backs and greatly enlarged jaws used in battles over access to spawning
sites and females, and in these fish body and weapon sizes predict both fighting performance and
reproductive success (86, 94, 211).

Most amphibians, past and present, lack conspicuous male weapons. Diplocaulids (Carbonif-
erous, ∼350–300 Mya) had broad flattened heads with laterally projecting “horns” (Figure 4b)
(193), and in the Southeast Asian voiceless frogs enlarged male heads, spines, and tusks, have arisen
multiple times (75). In these unusual frogs, males are relatively larger than females and defend
burrows in the soil (74, 75, 142, 228, 254).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 3
Weapons in Arthropods III. Coleoptera. (a) Dor beetles (Geotrupidae). 1, Lethrus apterus; 2, Athyreus nitidus; 3, A. tridens; 4, Blackbolbus
brittoni; 5, B. lunatus; 6, Blackburnium angulicorne; 7, Bolborhachium hollowayi; 8, Enoplotrupes sharpi; 9, B. coronatum; 10, Lethrus borealis;
11, Blackbolbus hoplocephalas; 12, Typhaeus typhoeus. (b) Flower beetles (Cetoniinae). 1, Cyphonocephalus olivaceus; 2, Dicranocephalus
bourgoini; 3, Eudicella quadrimaculata; 4, Ichnestoma rostrata; 5, Megalorrhina harrisi; 6, Mecynorrhina polyphemus; 7, Compsocephalus
dmitriewi; 8, Theodosia viridiaurata; 9, Taurhina polychrous; 10, Gnathocera trivittata; 11, Anisorrhina algoensis; 12, Goliathus albosignathus;
13, M. torquata; 14, M. passerinii; 15, T. longiceps; 16, T. splendens. (c) Dung beetles (Scarabaeinae). 1, Oxysternon conspicillatum;
2, Onthophagus capella; 3, Proagoderus rangifer; 4, O. raffrayi; 5, O. dunningi; 6, O. nigriventris; 7, P. lanista; 8, O. mouhoti; 9, O. praecellens;
10, O. sharpi; 11, O. pentacanthus; 12, P. tersidorsis. (d ) Rhinoceros beetles (Dynastinae). 1, Dynastes hercules; 2, Megasoma elephas;
3, Eupatorus birmanicus; 4, E. gracilicornis; 5, Chalcosoma caucasus; 6, Allomyrina (Trypoxylus) dichotoma; 7, Strategus antaeus; 8, Enema pan;
9, Dipelicus cantori; 10, Phileurus truncates; 11, Golofa porteri; 12, Xylotrupes gideon. (e) Miscellaneous. 1, frog-legged leaf beetle (Sagra
buqueti; Chrysomelidae); 2, giraffe weevil (Lasiorhynchus barbicornis; Curculionidae); 3, baradine weevil (Parisoschoenus expositus;
Curculionidae); 4, harlequin beetle (Acrocinus longimanus; Cerambycidae); 5, rove beetle (Oxyporus rufus; Staphylinidae); 6, euchirid
beetle (Euchirus longimanus; Scarabaeidae); 7, forked fungus beetle (Bolitotherus cornutus; Tenebrionidae); 8, Macrodontia cervicornis
(Cerambycidae); 9, tortoise beetle (Acromis sparsa; Chrysomelidae).

www.annualreviews.org • The Evolution of Animal Weapons 395



ANRV360-ES39-19 ARI 24 August 2008 14:10

a

c

b

1

1

7

8

15

21

1 2
3 4

5

6
7

22
23

24 25

14

16
17

18

19

20

9
10

11

13

12

2
3

4

5

6

4

9
10

11
12

13

14

6

5

7

8

2 3

396 Emlen



ANRV360-ES39-19 ARI 24 August 2008 14:10

Reptiles underwent several major radiations into both terrestrial and marine ecosystems begin-
ning in the Triassic (∼245–205 Mya) and peaking in diversity during the Jurassic (∼205–145 Mya).
Dinosaurs comprised a truly astonishing collection of forms, impressive both for the absolute sizes
that some species attained, and for the odd collection of spines, plates, claws, crests, and frills that
adorned their bodies (Figure 4b). Davitshavilli (62) was probably the first to propose that many
of these elaborate structures were the result of sexual selection, and similar conclusions have since
been reached by Molnar (186), Spassov (243), Farlow & Dodson (82) and Sampson (222).

Distinguishing weapons from ornaments is especially difficult for extinct taxa, but it is note-
worthy that several dinosaur structures are now thought to have transitioned from weapons into
ornaments. Early ceratopsids (e.g., Protoceratops) had short horns on their snouts and small frills
on their heads, but both structures were enlarged and elaborated in later lineages, resulting in
considerable diversity in horn and frill form (Figure 4b) (82, 222). Although the major horns
almost certainly functioned as weapons (82, 222), the frills, and the many small horns adorning
frill margins, are more likely to have functioned as visual signals (S. Sampson, personal communi-
cation). Similarly, hadrosaurs started with small cranial projections (e.g., Kritosaurus) that probably
functioned as weapons (118), but these became increasingly large and structurally complex, and
later forms are now thought to have functioned as both visual and auditory displays to either
mates or rival males (118, 260). Although less well resolved at present, male combat functions
have also been proposed for theropod cranial projections (187), ankylosaur tail clubs (223), and
even sauropod necks (226).

Visual displays (e.g., dewlaps, head bobbing) and male competition are pervasive and well
studied in extant reptiles (4, 153, 194, 195, 197, 249, 258), but very few species produce enlarged
weapons, and empirical studies of the functions of these weapons are sparse. A few species of
“proboscis anoles” and several agamids produce rostral horns (172, 219, 225, 270), and many
species of African chameleon produce rostral projections, ranging from broad, flat scale-colored
lobes, to as many as four long pointed horns (Figure 4c) (19, 217, 253). What little is known
about these lizards suggests that horns are used as visual signals and as weapons in agonistic male
contests on tree branches (202, 214).

Vertebrates: Mammals
Although a few nonungulate lineages of mammals had impressive male weapons [e.g., the rodent
Ceratogaulus (117), the walrus (239), and the giant armadillo Doedicurus (2)] (Figure 5a), the vast
majority of sexually selected weapons arose within the hoofed mammals, or ungulates (95, 96, 133,
210, 256). In general, both the Eocene (∼55–34 Mya) and the Miocene (∼24–5 Mya) saw multiple
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Figure 4
Weapons in Vertebrates I. (a) Fish. 1, Polyodon spathula; 2, Xiphias gladius; 3, Pristis pectinata; 4, Pristiophorus cirratus; 5, Pituriaspis doylei∗;
6, Sanchaspis sp.∗(headshield only); 7, Naso annulatus; 8, Akmonistion (Stethocanthus) zangerli∗; 9, Machiaraspis sp.∗; 10, Lungmenshanaspis
sp.∗(headshield only); 11, Oncorhynchus nerka; 12, Hybodus sp.∗; 13, Falcatus sp.∗; 14, Protosphyraena sp.∗ (∗, extinct species.) (b) Dinosaurs
and other extinct reptiles, Amphibian. 1, Ceratosaurus nasicornis; 2, Allosaurus fragilis; 3, Stygimoloch spinifer; 4, Elginia mirabilis;
5, Dicynodon sp.; 6, Diplocaulus sp. (Amphibia: Nectridea); 7, Cryolophosaurus ellioti; 8, Carnotaurus sastrei; 9, Ankylosaurus magniventris;
10, Therizinosaurus cheloniformis (forelimb only); 11, Dromaeosaurus albertensis (hindlimb only); 12, Hypsognathus fenneri; 13, Stegosaurus
longispinus (tail); 14, Dilophosaurus wetherilli; 15, Tsintaosaurus spinorhinus; 16, Corythosaurus casuarius; 17, Lambeosaurus lambei;
18, Parasaurolophus walkeri; 19, Desmatosuchus haplocerus; 20, Styracosaurus albertensis; 21, Centrosaurus apertus; 22, Pachyrhinosaurus
canadensis; 23, Einiosaurus procurvicornis; 24, Albertaceratops nesmoi; 25, Chasmosaurus mariscalensis. (c) Chameleons and Agamids.
1, Ceratophora tennentii; 2, Calumma nasuta; 3, Chamaeleo (Trioceros) montium; 4, Bradypodion tavetanum; 5, Harpesaurus beccarii;
6, C. quadricornis; 7, C. jacksonii.
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independent and spectacular radiations in weapon form within the ungulates (210). Because so
many of these clades have well-defined fossil records of both extinct taxa and transitional sequences
of morphology, it is clear that enlarged male weapons arose and diversified independently within
each of the groups (33, 95, 96, 132–134, 163, 210), an observation also supported by the diverse
forms and physical locations of the structures themselves (27, 210).

Within the odd-toed ungulates (Perissodactyla), the brontotheres diversified during the
Eocene. Brontotheres had large, often forked, bony horns on their noses (113, 133, 170), and
in some species these clearly were sexually dimorphic (210). The rhinos (Rhinocerotidae) arose
from this clade during the mid-Eocene, and radiated during the Miocene. Most early rhinos were
hornless, but keratinized horns arose several times (209, 210), and included the side-by-side nasal
horns of Diceratherium, and the two-meter-long forehead horn of Elasmotherium (Figure 5b).

Weapons arose several times within the tethytheres, originally in the arsinotheres (Eocene
animals with a giant pair of horns on their noses), and later in the proboscideans, which peaked in
diversity during the late Miocene (∼10 Mya) (Figure 5c). Early proboscidians such as Stegotetra-
belodon had tusks arising from both their upper and lower jaws; later forms included Deinotherium,
with tusks arising from the lower jaw, the bizarre shovel-tusked Platybelodon, and the extremely
long-tusked Anancus, as well as mastodons and modern elephants (196, 210, 230).

Within the even-toed ungulates (Artiodactyla), weapon radiations occurred in the pigs, gi-
raffids, antilocaprids, cervids, and bovids, as well as in the extinct protoceratids, palaeomerycids,
and hoplitomerycids. Pig-like modes of life apparently evolved several times (210), and both the
entelodonts, and later the suoids, included species with impressive canines and extreme bony jaw
protuberances (Figure 5a) (112, 133, 273). The earliest protoceratids (Tylopoda) were hornless,
but many later species had diverse—even bizarre– head outgrowths (Figure 6a) (132, 133, 208).
Both the entelodonts and the protoceratids were largely extinct by the end of the Miocene (210).

The giraffids date back to the early Miocene (∼18 Mya), and by the middle of the Miocene
had diversified into at least eight forms with elaborate weapons called “ossicones” (Figure 6b)
(40). Most of these taxa had died off by the Pliocene (5 Mya), and only the giraffe and okapi
survive today. Interestingly, one recent study suggested that the long necks of modern giraffe may
function together with the ossicones in male combat over access to females, as this species exhibits
pronounced male aggression with frequent injuries to fighting males, as well as sexual dimorphism
in neck and ossicone length (237) [a similar argument was also recently proposed for the sexually
dimorphic necks of sauropod dinosaurs (226)].

The pronghorns (Antilocapridae) diversified during the Miocene in the Americas and were
represented by an impressive variety of species and weapon forms as recently as two million years
ago (Figure 6c) (133, 210, 259). In the earlier antilocaprids only the males produced the horns,
but all of the more derived species had horns in both sexes (though these were relatively longer
in males) (133). All but our current pronghorn (Antilocapra americana) went extinct by the end of
the last Ice Age.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 5
Weapons in Vertebrates II. (a) Miscellaneous mammals. 1, babirusa (Babyrousa babirussa); 2, horned pig (Kubanochoerus gigas∗);
3, walrus-like dolphin (Odobenocetops sp.∗); 4, horned rodent (Epigaulus sp.∗); 5, walrus (Odobenus rosmarus); 6, glyptodont (Doedicurus
sp.∗); 7, narwhal (Monodon monoceros). (b) Thunder beasts and rhinoceroses. 1, Elasmotherium sibiricum∗; 2, Embolotherium andrewsi∗;
3, Brontops robustus∗; 4, wooly rhino (Coelodonta antiquitatis∗); 5, Uintatherium anceps∗ [Uintatheres may be more appropriately placed
within the rodent/rabbit lineage (Lucas 1998.)]; 6, B. brachycephalus∗. (c) Proboscidia. 1, Anancus arvernensis∗; 2 Arsinotherium∗; 3, wooly
mammoth (Mammuthus primigenius∗); 4, Stegotetrabelodon syrticus∗; 5, Deinotherium giganteum∗. (∗, extinct species.)
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The true deer (Cervidae) are unique among the ungulates in bearing antlers. Antlers are rigid
bony outgrowths that are shed and regrown each year, and in all of the 47 extant species except the
reindeer (Rangifer tarandus), these weapons are confined to males (26, 27, 97, 101, 163, 210). Early
deer had enlarged tusks in males (as in present-day Chinese water deer, Hydropotes inermis). Tusks
were subsequently complemented by the addition of cranial structures (as in modern muntjac,
Muntiacus muntjak), and eventually replaced by these cranial weapons (96, 97, 163). Early deer
lineages displayed a remarkable diversity of horn (antler) locations and numbers (Figure 7) (133,
210). All extant deer produce a single pair of antlers at the base of the head. However, the forms of
these antlers have radiated impressively and include extinct giants such as the Irish Elk (Megaloceras
giganteus), the Gallic moose (Cervalces latifrons), and the “brush-antlered” deer with twelve tines
on each antler (Eucladoceros sedgwicki; Figure 7).

The Bovidae (antelope, cattle, sheep, goats) are the most diverse family of living ungulates,
with approximately 140 extant species on four continents and more than 300 fossil species (98).
The bovids underwent several rapid radiation events: an initial radiation in the early Miocene
that led to the major tribes and then at least one (and possibly several) subsequent radiations
associated with major changes in vegetation and climate (e.g., the emergence of savannah) (3, 98,
111, 176). Several bovid lineages independently colonized the new savannah habitats, and as a
result, many morphological adaptations (including enlarged male weapons) are thought to have
arisen independently in each of the bovid tribes (3), contributing to the diversity among lineages
we see today.

The earliest fossil bovids (Eotragus) had short, straight postorbital horns on their heads and
were sexually dimorphic (98, 133, 136). Horn morphologies peaked in diversity in the Pleistocene
(98), and today include species with thick, curled horns (e.g., bighorn sheep), twisted and spiraling
horns (e.g., greater kudu), and long, straight horns (e.g., oryx) (Figure 6d); many species also have
horns in females (136, 148, 199, 218).

The ungulates are without question the best-studied animals with weapons, and countless field
studies on their behavior, life history, and reproductive biology have documented weapon use, as
both visual signals assessed by rival males and weapons in escalated fights (13–15, 42, 114, 174,
255). Males with the largest weapons are generally the largest and best-conditioned males (42, 44,
46, 85, 255), almost always the most likely to maintain access to females (14, 15, 43, 44, 114), and
usually achieve the highest fertilization success (46, 156, 171, 207).

The ungulates are also noteworthy in that numerous researchers have tackled the question
of why weapon forms are diverse. Modern considerations of this topic have converged on two
basic and complementary evolutionary scenarios. The first explicitly considers the habitats and
substrates in which the male fights occur (e.g., dense forests, open grasslands, cliffs), with emphasis
on the details of the fights themselves, to test whether evolutionary changes in the nature of
male fights (e.g., from lunging and stabbing, to stabbing and blocking, to sparring and pushing)
might have led to changes in the particular forms of the weapons (e.g., additions of branches or
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Figure 6
Weapons in Vertebrates III. (a) Protoceratidae (Tylopoda). 1, Kyptoceras∗; 2, Synthetoceras∗; 3, Protoceras∗; 4, Paratoceras∗; 5, Syndyoceras∗.
(b) Giraffidae. 1, Sivatherium∗; 2, Giraffokeryx∗; 3, Canthumeryx∗; 4, Bramatherium∗; 5, Prolibytherium∗; 6, Samotherium∗;
7, Climacoceras∗. (c) Antilocapridae. 1, Merriamoceros∗; 2, Tetrameryx∗; 3, Hexameryx simpsoni∗; 4, Paramoceros∗; 5, Paracosoryx∗;
6, Osbornoceros osborni∗; 7, Antilocapra americana; 8, Ilingoceros∗; 9, Plioceros∗; 10, Ramoceros∗. (d ) Bovidae. 1, spanish ibex (Capra pyrenaica);
2, dik-dik (Madoqua kirkii ); 3, Grant’s gazelle (Gazella granti); 4, kudu (Tragelaphus strepsiceros); 5, bighorn sheep (Ovis canadensis).
6, waterbuck (Kobus ellipsiprymnus); 7, impala (Aepyceros melampus); 8, long-horned African buffalo (Pelorovis antiquus)∗; 9, Asiatic ibex
(Capra ibex); 10, chowsingha (Tetracerus quadricornis); 11, markhor (Capra falconeri). (∗, extinct species.)
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tines, inward or outward curls). This approach has been applied to weapon radiations in both the
cervids and bovids (12, 95–97, 149, 163, 169), and in general these comparative (though often
not phylogenetic) studies have concluded that habitat-specific changes in male fighting styles,
resulting in part from evolutionary increases in overall body size, are likely to have contributed to
the evolution of increasingly large and elaborate male weapons.

The second approach also focuses on the ecological contexts in which fights take place, includ-
ing especially the habitats (forest, grassland, etc.), but emphasizes the distribution and defensibility
of food resources (selective foragers on forbs, grazers on abundant fibrous vegetation), and the
mating systems that are favored in these ecological situations (territorial and largely solitary pairs,
resource-defense and harem defense polygyny). This approach has been applied to both cervids
and bovids (133, 135, 148, 199), and using reconstructions of paleoenvironments and dentition of
fossil taxa, it has also been applied to extinct ruminants (132, 133) and ceratopsid dinosaurs (186,
222). The general conclusions are that the evolutionary transitions in ungulates from forests to
open grasslands and savannah were accompanied by increased group sizes, as well as increased
potential for males to guard access to multiple females. This led to increases in the intensity of
sexual selection and favored the evolution of increasingly large and elaborate male weapons.

Only very recently have phylogenetic comparative methods been used to test directly for
evolutionary associations between these aspects of ecology and behavior and specific changes in
ungulate weapon morphology. Caro et al. (33) found compelling support for relationships between
mating system (e.g., monogamy versus polygyny), group size (intensity of sexual selection), fighting
style (stabbing, wrestling), and major changes in weapon size and shape in both bovids and cervids.
Similarly, in his study of bovids, Bro-Jorgensen (23) found that the intensity of sexual selection
predicted weapon size.

SYNTHESIS: THE NATURE OF ANIMAL WEAPONS

Weapons Evolve in Animals with Resource-Defense
or Female-Defense Mating Systems

In almost all of the animals studied, weapons were used to defend critical resources that directly
or indirectly translated into mating opportunities. Despite a truly breathtaking range of habitats
and lifestyles, all of the resources in question were limiting in either space or time, and they
were localized in ways that rendered them economically defendable. By displacing rival males, the
winners of these contests are predicted to garner disproportionate access to fertilizations, and these
reproductive benefits, if they are high enough, can outweigh even substantial costs of producing
and bearing a weapon (Grafen 1990, Nur & Hasson 1984, Parker 1983, Zeh & Zeh 1988). Thus,
we predict weapons will be favored whenever the benefits of their expression outweigh the costs,
and in an ecological context this occurs whenever critical resources are confined in such a way that
one or a few males are able to defend them (Emlen & Oring 1977).
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Figure 7
Weapons in Vertebrates IV. Cervidae and Dromomerycidae. 1, Cervalces latifrons∗; 2, Megaloceros giganteus∗; 3, Axis axis; 4, Cervalces
scotti∗; 5, Cervus elaphus affinis; 6, Aoglochis sp.; 7, Cervus sp.∗; 8, C. elaphus acoronatus∗; 9, Eucladoceros sedgwicki∗; 10, C. elaphus
hippelaphus∗; 11, C. elaphus canadensis; 12, E. senezensis∗; 13, Dama dama∗; 14, Axis sp.∗; 15, Rusa unicolor; 16, Rucervus sp.; 17, Dicrocerus
sp.∗; 18, Hydropotes inermis; 19, Megaceros giganteus∗; 20, Procranioceras∗ (Dromomerycidae); 21, Cranioceras∗ (Dromomerycidae);
22, Stephanocemas∗; 23, Sinclairomeryx∗ (Dromomerycidae); 24, Cervavitas sp.∗; 25, Eustylocerus∗. (∗, extinct species.)
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In a surprising diversity of taxa, these critical resources were burrows or tunnels where fe-
males lay eggs, and the especially defensible nature of burrows may have played an important
role in favoring the evolutionary enlargement of weapons in these cases. Most of the beetles with
weapons (Daguerre 1931; Eberhard 1979, 1987; Emlen & Philips 2006), many of the amphipods
(Clark 1997; Conlan 1989, 1991), isopods (Shuster 1989), and decapods (Christy & Salmon 1984,
Jennions & Backwell 1996, Knowlton & Keller 1982), tusked wasps (Longair 2004), big-headed
bees (Kukuk & Schwartz 1988), and tusked frogs (Emerson 1992), all guard entrances to bur-
rows containing females [even horned rodents may have guarded burrows (Hopkins 2005)]. In
other cases, feeding or egg-laying sites are confined in ways that permit them to be guarded
by males, as occurs along branches and new shoots of plants guarded by coreid bugs (Miyatake
2002), rhinoceros and cerambycid beetles (Eberhard 1978, Goldsmith 1987), and chameleons
(Parcher 1974); sap oozes on tree trunks guarded by many rhinoceros beetles (Hongo 2007) and
stag beetles (Hosoya & Araya 2005); and bracts of fungi guarded by tenebrionid and staphylinid
beetles (Conner 1988, Hanley 2001). In still other cases, males guard access to females directly,
as in stalk-eyed flies (Burkhardt & de la Motte 1987, Lorch et al. 1993, Wilkinson & Dodson
1997), amphipods (Ward 1988), crabs ( Jormalainen 1998), and many ungulates (Coltman et al.
2001).

All of these taxa exploit some type of critical resource that is patchily distributed and required by
females, and males compete for exclusive access to these locations. Although the actual intensities of
selection on male weapons have only been quantified for a few species (Coltman et al. 2001, Conner
1988, Hongo 2007, Hunt & Simmons 2001, Kruuk et al. 2002, Preston et al. 2003, Shuster & Wade
1991, Wellborn 2000, Zeh & Zeh 1992), it appears that the ecology and behavior of these animals
generally results in intense and consistent directional sexual selection for increased competitive
abilities in males. These situations could easily lead to the rapid evolution of extreme trait sizes
(Andersson 1994; West-Eberhard 1979, 1983), and may help explain the prolific occurrence of
extreme weapon proportions across taxa.

Weapons Honestly Indicate Differences in Individual Condition or Quality
Fisher (1930) first pointed out that it would not pay a small male to cheat by producing a mis-
matched weapon, because these males would be challenged repeatedly by rivals and quickly dis-
covered as charlatans. More recent theoretical models reach the same conclusion: Not all males in
a population should benefit from producing the largest possible weapon sizes. Specifically, males
in the best physical condition—often those with the best nutritional histories, best genetic qual-
ities, and/or the largest body sizes—are predicted to invest relatively more into weapons than
poorer-condition, smaller males (Bonduriansky & Day 2003, Grafen 1990, Kodric-Brown et al.
2006, Nur & Hasson 1984, Zeh & Zeh 1988).

Many of the animal weapons reviewed here have been studied in this regard. All exaggerated
male weapons vary prolifically among individuals within populations, and nearly always, these
weapons are the most variable structures in these species. Furthermore, allocation to weapon
growth is exquisitely sensitive to individual condition and to aspects of the environment that
affect condition, such as nutrition (Kruuk et al. 2002, Kukuk 1996, Kurdziel & Knowles 2002,
Smith & Palmer 1994, Tomkins 1999), and parasites (Folstad et al. 1996, Ezenwa & Jolles 2008).
Consequently, enlarged or exaggerated animal weapons almost always amplify, and honestly
indicate among-individual differences in size, condition, or quality [e.g., fiddler crab claws
(Levinton & Allen 2005, Pope 2000), and deer antlers (Kruuk et al. 2002, Vanpe et al.
2007)].
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Weapons Function as Assessment Signals, as Well as Armaments in Combat
Game theory models of male combat predict that males will benefit if they are able to assess the
potential of rival males and avoid dangerous contests with unbeatable opponents. These models
make two specific predictions, both of which have been substantiated repeatedly in taxa with
pronounced weapons. First, weapons should function as signals that are used by males to resolve
contests, and second, contests should be most likely to escalate when opponents are similar in
body or weapon size (Enquist & Leimar 1983, Maynard Smith 1974, Parker 1974). Crab and
shrimp claws, fish horns, coreid femora, and the antlers of flies and deer, all have been found to
function as visual or tactile signals in male contests, and in all of these animals fights are most
likely to escalate into true battles only when rival individuals are similar in size (Arai & Sato 2007,
Barrette & Vandal 1990, Hoem et al. 2007, Hughes 1996, Jennions & Backwell 1996, Miyatake
1993, Panhuis & Wilkinson 1999, Rubenstein & Hazlett 1974, Sneddon et al. 1997, Wilkinson
& Dodson 1997).

Interestingly, this basic process may account for one of the recurring patterns of weapon
evolution. The most elaborate weapons rarely inflict real damage to opponents, but these structures
are very effective at revealing even subtle differences among males in their size, status, or physical
condition [e.g., rhinoceros beetle horns (Eberhard 1979), fiddler crab claws (Levinton & Allen
2005), and harlequin beetle forelegs (Zeh et al. 1992)]. In contrast, many animals with unimpressive
or even inconspicuous weapons regularly inflict serious damage in male contests [e.g., many wasps
(Abe et al. 2003, Bean & Cook 2001, Danforth 1991) and spiders (Leimar et al. 1991)], and this
pattern suggests a causal mechanism for the enlargement and elaboration of weapons: Weapons of
increased size or complexity may be favored because they more readily incorporate an assessment
component to their function.

For a few clades it is now possible to reconstruct some of the historical sequences of weapon
evolution, and the same basic pattern is evident in the cervids and bovids (Geist 1966, 1998; Lincoln
1994; Lundrigan 1996), ceratopsids (Farlow & Dodson 1975, Sampson 1997), and hadrosaurs
(Hopson 1975). Weapons begin as relatively small, and very dangerous traits (e.g., short, sharp
horns, fangs, tusks). Later versions tend to be much larger, more complex, and in particular,
more likely to serve as indicators of status assessed by rival males. The recurrence of this basic
transitional sequence implicates the evolution of assessment behavior as a mechanism driving the
diversification of weapon form, a hypothesis that will need to be tested directly in future research.
If true, then we would predict a positive relationship across taxa within a clade between the degree
of elaboration or exaggeration of weapons, and the extent to which male contests are resolved
by assessment prior to escalated combat (or a negative correlation with the relative frequency of
lethal or dangerous male combat).

Some Weapons Also Function in Female Choice
Berglund et al. (1996) suggested that if weapons convey such useful information to rival males,
females should also benefit from this information. Although by no means universal, it does appear
that many male weapons are used by females as a basis for mate choice. Female preferences for
males with large weapons have been observed in earwigs (Moore & Wilson 1992, Tomkins &
Simmons 1998), stalk-eyed flies (Burkhardt & de la Motte 1988, Wilkinson et al. 1998), and
fiddler crabs (Pope 2000).

That female choice may also be shaping weapon evolution raises several exciting possibilities.
Models of ornaments suggest that female choice can dramatically accelerate the rate of evolution
of ornament size or complexity (reviewed in Andersson 1994, Mead & Arnold 2004), but this has
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never been explicitly tested in the case of weapons (but see A.J. Moore & J.B. Wolf, in preparation;
Shuster & Emlen, in preparation). One obvious direction for future empirical research would be
to compare the relative rates of evolution of weapons that are, and are not, also used as a basis for
female mate choice, and to test whether traits of dual function (sensu Berglund et al. 1996) evolve
more rapidly and/or reach more extreme sizes than do pure weapons.

Some Females Bear Weapons as Well
The spiny horns of “horned lizards” (Phrynosoma) and “thorny devils” (Moloch horridus) are pro-
duced by both males and females, and horns in these species are thought to function primarily
as a defense against predators (Young et al. 2004). In many beetles, some decapods, and many
of the armed dinosaurs, fish, and ungulates, the females also produce weapons. In virtually every
case these female weapons are similar to, but smaller than, the corresponding structures of males.
In the few studied examples, females use horns in fights with conspecific females, generally over
food resources or to protect young (e.g., Berger & Cunningham 1994, Knowlton & Keller 1982;
Ezenwa & Jolles 2008). Two comparative studies explicitly tested for a role of sexual selection in
the evolution of female weapons, and concluded that these structures most likely had been shaped
by natural, rather than sexual selection (Bro-Jorgensen 2007, Caro et al. 2003). Although several
reviews have focused on this topic (Kiltie 1985, Packer 1983, Roberts 1996), a great many taxa with
female weapons have yet to be studied, and basic questions still linger. For example, under what
circumstances do female weapons evolve? Do weapons arise in both sexes due to natural selection
(e.g., as a defense against predators) and then subsequently become co-opted as signals in males?
Or do these weapons arise initially in males, and only in specific circumstances become co-opted
by females? To what extent can/does the evolution of female weapons occur independently from
the evolution of male weapons?

WHY ARE ANIMAL WEAPONS DIVERSE?
Animal weapons clearly are capable of rapid diversification in form, and most clades with exag-
gerated male fighting structures are characterized by extraordinary among-species variation in
weapon morphology. Here, the biology is less well understood, and with only a very few excep-
tions, compelling arguments for why male weapons should differ in form are lacking. In almost
all cases, the details of the shape or structure of the weapons, and in particular, the differences in
these details from one species to the next, have not been adequately explored.

Nonetheless, several mechanisms have been proposed to account for weapon diversity. One,
already mentioned, is that weapons gradually change their function from pure armaments to
structures that increasingly perform display or other assessment behaviors [in addition to serving
in combat (Mechanism 1)]. These assessment functions could then favor any of numerous possible
elaborations to weapon form, provided that these new versions enhanced the ability of individuals
to readily communicate their status or condition to opponents (or to mates), and provided the
new versions could still be used in fights when necessary. There are many ways to make a weapon
more conspicuous, and subsequent adornments can take a variety of forms. Thus, in principle,
this process can occur along independent trajectories in each lineage, and it has the potential to
generate among-species divergence in weapon morphology (West-Eberhard 1983).

A corollary of this could also shape the directions of weapon evolution (Mechanism 2). Non-
lethal assessment can take many forms. Certainly, visually conspicuous structures facilitate this
process. But so, too, do ritualized or stereotyped contest behaviors. In many taxa, males lock their
weapons into highly repeatable positions, and thus entwined, engage in protracted pushing or
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wrestling matches. With weapons locked into position, males are able to effectively assess the
strength and condition of rivals without significant risk of physical harm. This type of combat
has been proposed for many ungulates (Geist 1966, 1998; Lincoln 1994), ceratopsids (Farlow &
Dodson 1975, Sampson 1997, Spassov 1979), and several beetles (Eberhard 1979), and in all of
these taxa males have grooves, or forks in either their weapons, or in the contact-regions of their
bodies, that “fit” the weapons of rival males. Baradine weevils actually have deep invaginations
into their chest cavity that fit the paired horns of opponent males, and effective battles require the
horns to be inserted into these pockets (Eberhard et al. 2000). Thus, the evolution of ritualized
pushing or wrestling may select for particular features or shapes of weapons. For this process
to generate divergence in weapon form, it would have to favor different locking mechanisms in
different lineages, and it is not clear why this should occur (indeed, this form of fighting has been
proposed to generate stabilizing, rather than diversifying, selection; Andersson 1994). Neverthe-
less, this aspect of combat behavior may help explain some of the details of weapon morphology in
specific lineages, and in principle, it could contribute to the evolutionary diversification of weapon
form.

Additional mechanisms have been proposed that also involve the particulars of the male con-
tests. In one case, divergent lineages of animals, by expanding into new and different habitats, may
end up fighting under very different conditions, and these changes in the physical contexts of male
contests may drive the evolution of habitat-specific modifications to weapon form (Mechanism 3).
We have already seen how this logic has been applied to diversity in ungulate weapons (Caro
et al. 2003, Geist 1966, Lincoln 1994, Lundrigan 1996), and similar processes may help explain
variation in insect weapons [e.g., stag and rhinoceros beetles that fight in the open on tree trunks
or branches have longer and spindlier legs and more awkward horns than species that fight inside
burrows or under logs (Eberhard 1979, Hosoya & Araya 2005)], but these ideas have yet to be
tested directly.

However, it is clear that this mechanism does not explain weapon diversity in all cases, because it
is possible for taxa to radiate into diverse habitats without significantly altering the physical contexts
of their male contests. This is particularly relevant for the many animals that defend burrows. One
recent phylogenetic study of dung beetles found surprisingly little association between aspects of
the habitat or ecology of species and the types of weapons they produced (Emlen et al. 2005), and
this appears to reflect the fact that male fights nearly always occurred in the same setting (inside
burrows), regardless of where the beetles lived (e.g., desert, savannah, tropical wet forest), or what
types of dung resources they utilized. Consequently, habitat-specific variation in fighting styles
may help explain the evolutionary diversification of weapon morphologies in clades of animals
that fight in varied physical contexts (as appears to be the case for ungulates, and possibly the
dynastine and lucanid beetles), but these explanations are predicted to be less useful for taxa that
consistently fight over similar resources (e.g., burrows).

It is also possible that the nature of the fights themselves may confer a performance advantage
to novelty per se (Mechanism 4) (Darwin 1871, West-Eberhard 1983). If adornments to a weapon
(e.g., new forks or tines or twists) gave their bearers an edge, then male competition could prove
to be a potent driver of weapon divergence. This idea is especially attractive given that it is
compatible with arms races, and that it can lead to “arbitrary” directions of weapon evolution.
This mechanism could well account for the seemingly inexplicable differences in weapon form
that we observe across taxa. However, it is not at all clear why novelties should confer performance
advantages in contests, and to my knowledge, this mechanism has yet to be rigorously tested for
any clade.

In some cases, the directions of weapon evolution may be driven by selection to minimize
the costs of producing and wielding these structures (Mechanism 5) (Emlen 2001). Whenever
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alternative weapon forms differ in the nature of the costs they incur (e.g., in flying insects, mandible
or horn shapes may affect the center of gravity, wing loading, rotational inertia, and the stream-
lining of these animals as they fly), then the potential exists for selection to favor some weapon
forms over others in different environments. In one study of dung beetles, among-species patterns
of weapon diversity were best explained by considering pleiotropic consequences (trade-offs) of
horns for adjacent morphological structures (e.g., eyes, antennae, wings), and at least some of the
historical transformations in horn morphology in these beetles may have been brought about to
minimize these different costs of horns in specific habitats (Emlen et al. 2005).

Finally, it may be that the volatility of sexual selection in general, and its intrinsic potential for
rapid character evolution, is sufficient to generate diversity in weapon form, irrespective of the
particular habitats or fighting styles (Mechanism 6). Because performance in male competition is
always measured relative to the mileau of rival males present at any place and time, sexual selec-
tion may be especially sensitive to chance events (West-Eberhard 1983). Even brief population
bottlenecks, or founder events, if they alter the mixture of male phenotypes, may be sufficient
to tip the subsequent evolution of that population in a new direction. Most likely, this volatility
of intense selection combined with any mechanism resulting in speciation, would be enough to
initiate divergence in weapon form, and these processes may combine easily with any of the above
mechanisms to drive related lineages of animals along very different trajectories of weapon evolu-
tion: all increasing in size and complexity, but in different directions (West-Eberhard 1983). This
logic has been incorporated into recent theoretical models for the evolution of ornament diversity
and speciation (i.e., for female choice; Higashi et al. 1999, Panhuis et al. 2001, Pomiankowski &
Iwasa 1998, Ritchie 2007, Schluter & Price 1993), but has yet to be considered for weapons.

It is noteworthy that many of the clades in this review are thought to be speciose for reasons
that have nothing to do with sexual selection or the weapons themselves. For example, the major
radiations of ungulates coincided with dramatic changes in climate, the appearance of new and
open habitats (grasslands, savannas), and cyclic expansion and contraction of habitats (e.g., from the
advancing and retreating ice sheets of the successive ice ages)—all potential drivers of speciation
(Gentry 1990, Hernandez-Fernandez & Vrba 2005). Similarly, dramatic habitat fluctuations are
thought to have driven pulses of diversification in dinosaurs (e.g., the repeated expansion and
retraction of the Cretaceous Western Interior Seaway in North America; Horner et al. 1992,
Sampson 1997). In this case, explosions of rapidly diverging animal lineages may be the backdrop
against which the most impressive radiations in weapons evolved, and the diversity of weapons
may simply be an inevitable outcome of a volatile agent of rapid change superimposed on splitting
lineages.

At the time of this publication, comparative phylogenetic tests of alternative hypotheses for
the diversity of weapon form are almost nonexistent, and even these are merely first attempts at
resolving these questions. Theoretical treatments of weapon divergence have yet to be attempted,
and as a result we know surprisingly little about how or why animal weapons should exhibit such
stunning variations in form.

In summary, exaggerated male weapons of sexual selection have arisen many, many times, and
have radiated spectacularly in form. Without question, the diversity of these structures easily ri-
vals that of their better-studied counterparts, the ornaments of female mate choice. Many of these
armed species have now been studied rigorously in the field, and from these studies it appears that
existing theory does an admirable job of characterizing the biology of male-male competitions,
with explicit predictions for the ecological contexts of fights, the intensity and duration of fights,
the investment patterns by individual males into the armaments of fights, and the assessment
of these weapons by both rival males and females, all receiving robust empirical support from di-
verse taxa. What is less well understood is how the mechanism of male-male competition compares
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to that of female choice, particularly with respect to the relative rates of character evolution, and
to the intrinsic potential for divergence in trait form. Indeed, the most glaring void in our un-
derstanding of weapon evolution concerns the mechanisms generating diversity in weapon form.
The potential for male competition to drive rapid divergence in weapon morphology remains one
of the most exciting and understudied topics in sexual selection research today.
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