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Abstract

Animal structures occasionally attain extreme proportions, eclipsing in size
the surrounding body parts. We review insect examples of exaggerated traits,
such as the mandibles of stag beetles (Lucanidae), the claspers of praying
mantids (Mantidae), the elongated hindlimbs of grasshoppers (Orthoptera:
Caelifera), and the giant heads of soldier ants (Formicidae) and termites
(Isoptera). Developmentally, disproportionate growth can arise through
trait-specific modifications to the activity of at least four pathways: the sex
determination pathway, the appendage patterning pathway, the insulin/IGF
signaling pathway, and the juvenile hormone/ecdysteroid pathway. Although
most exaggerated traits have not been studied mechanistically, it is already
apparent that distinct developmental mechanisms underlie the evolution of
the different types of exaggerated traits. We suggest this reflects the nature
of selection in each instance, revealing an exciting link between mechanism,
form, and function. We use this information to make explicit predictions for
the types of regulatory pathways likely to underlie each type of exaggerated
trait.
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INTRODUCTION

Body parts typically scale proportionally with body size, but in some organisms, one or a few
traits grow disproportionately large, becoming defining features of the species. Exaggerated mor-
phologies, such as elongated appendages or large outgrowths, have fascinated biologists for many
reasons. They push the bounds of what we know is possible in nature, and raise numerous ques-
tions about how such traits can develop and evolve. What habitats or social situations provide
sufficiently strong selection to favor extreme trait size? How does one trait become uncoupled
from the rest of the body so that it grows more rapidly, or for a longer period, than surrounding
structures? And what can an understanding of extreme development tell us about the regulation
of growth in general?

Here we review recent advances in our understanding of the evolution and development of ex-
aggerated structures, emphasizing insect models. We explore three contexts favoring exaggerated
traits: sexual selection (Figure 1a–d), locomotion/predation/feeding (Figure 1e–h), and colo-
niality (Figure 1i–l). Although extreme appendages can result from each context, the nature of
selective forces results in different trait properties. For example, whereas ornaments and weapons
of sexual selection exhibit heightened nutrition-sensitive expression and display enhanced among-
individual variability (Figure 2), properties that make these traits conspicuous and reliable signals
of male quality, feeding, locomotor, and colony defense structures do not. For the first time,
we can begin to relate the details of developmental mechanism to ecological context, connecting
growth, form, and function. Although most studies are preliminary, the patterns revealed are clear
and suggest that the mechanistic routes are not the same for all exaggerated traits. We use this
information to make explicit predictions for the types of regulatory mechanisms likely to underlie
each type of exaggerated trait.

THREE REASONS WHY TRAITS GET REALLY BIG

Reproductive Competition

One widespread driver of extreme trait size is competition for mates (sexual selection). In many
species, rival males battle over access to territories or resources utilized by females. In other species,
females actively choose mates on the basis of the relative size of an ornamental structure. Multiple
studies involving diverse species demonstrate greater reproductive success for males with the most
exaggerated weapon or ornamental feature, resulting in intense directional selection (reviewed in
2, 3, 46, 47, 85). As tusks, horns, or displays become bigger within this social context, so too does
the standard against which a male must contend, favoring further increases that can eventually
result in weapons or ornaments of extreme proportion (36, 186). Indeed, understanding the causes
and consequences of trait exaggeration in the context of sexual selection has been a fertile area for
evolutionary theory (14, 119, 157).

Male competition has driven the evolution of a diversity of exaggerated structures in insects.
Examples include mandibles in stag beetles (76, 117, 140), rove beetles (55, 68), flour beetles (137,
138), wetas (88, 94), and dobsonflies (166) (Lucanidae, Staphylinidae, Tenebrionidae, Orthoptera:
Anostostomatidae, and Corydalidae, respectively); forelegs in harlequin beetles (196), rhinoceros
beetles (42), and weevils (185) (Acrocinus longimanus, Dynastinae, and Curculionidae, respectively);
hindlegs in leaf-footed bugs (43, 58, 126, 127) and frog-legged leaf beetles (86) (Coreidae and Sagra
spp., respectively); and abdominal cerci in earwigs (Forficulidae) (129, 163). Male competition has
also led to the evolution of enlarged heads in ants (72), snouts in bees (34, 101), “necks” in flies
(17, 145, 190), and eyestalks in weevils (84, 143) (Cardiocondyla spp., Andrenidae and Halicti-
dae, Diopsidae, and Brentidae, respectively); novel protrusions including tusks and antlers in flies
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(41, 130, 188), wasps (110), and wetas (62) (Tephritidae, Synagris spp., and Motuweta spp., respec-
tively); and horns in weevils (44), fungus beetles (27), dor beetles (77), flower beetles (74, 105),
dung beetles (49, 79, 142, 148), and rhinoceros beetles (33, 42, 54, 75, 149) (Baridinae, Bolitotherus
cornutus, Geotrupinae, Cetoniinae, Scarabaeinae, and Dynastinae, respectively) (Figure 2).

Female choice for exaggerated structures is less well studied in insects than in other animals.
Nevertheless, female earwigs (Forficula auricularia) prefer males with longer forceps (174), female
bees (Crabro cribrellifer) prefer males with the most elaborate foretibial plates (111), and female
stalk-eyed flies prefer males with the longest eyestalks (17, 18, 189, 190). Females may use other
exaggerated traits, such as the massive sex combs on the legs of Drosophila prolongata males, to
determine postcopulatory utilization of sperm (7, 96).

Feeding, Prey-Capture, and Locomotor Traits

In contrast with sexual selection, which can produce consistent directional selection for larger
traits, natural selection on exaggerated traits is typically stabilizing. Although large weapons may
enhance prey handling, they might also impede movement, reducing capture rates. As a result,
exaggerated predator weapons tend to evolve when the constraints of weapon size on locomotion
are relaxed, such as hunters that creep up on unsuspecting prey or ambush predators that wait
for prey to come to them (47). Praying mantises (Mantidae), for example, have enlarged raptorial
forelegs used to snatch prey (112). Capture success is determined by clasper speed, not rate of
locomotion. Longer forelegs move through the air faster than shorter ones and create a larger kill
zone (56, 112, 116), providing a selective advantage for elongation even though the forelegs are
cumbersome during walking or flight. Similar forelegs have evolved in the mantispids (Neuroptera)
(100) and the shore fly genus Ochthera (Diptera) (120). Other exaggerated raptorial appendages
include the enlarged mandibles of larval antlions (Neuroptera) (66, 102) and the snap-jaw labium of
dragonfly nymphs (Aeshna spp.) (169). Feeding specialization has also resulted in the evolution of
elongated mouthparts, such as the extreme sucking proboscis of some flies (e.g., Moegistorhynchus
longirostris) (146), hawk moths (Sphingidae) (184), and soapberry bugs ( Jadera spp.) (22), and the
long snouts of some weevils (Curculio spp.) (12, 173).

In other cases, selection for jumping, swimming, or digging has led to disproportionately
large appendages. Lengthened limbs can enhance leverage, reducing the force needed to jump
long distances. Many insects combine this elongation with a ballistic release mechanism that uses
elastic energy stored in the exoskeleton to enhance limb momentum (10, 20, 67). Enlarged hindlegs
facilitate jumping in crickets, grasshoppers (19, 20), flea beetles (Alticinae) (59, 60), and predatory
pouncing in backswimmers (Notonectidae) (63). Similarly, water striders (Gerridae) have enlarged
midlegs that function like oars (78), and mole crickets use fossorial legs for digging (180).

Social Insect Soldiers

Like ambush predators, social insects also experience selection for extreme fighting structures,
most often in the context of colony defense. These colonial insects also faced trade-offs with
enhancing weapon size, including basic functions such as being able to handle food. However,
the evolution of a division of labor, with nestmates performing tasks related to reproduction and
colony maintenance, freed a caste of soldiers to evolve exaggerated traits that could be employed
in defending the colony (193). Specialized colony defenders are found in two families of aphids
(Pemphigidae, Hormaphididae) (165), several genera of ants (73), and all termites (38, 45, 147)
(Figure 1i–l). We focus on the last group, as termite soldiers have a number of physiological
modifications that distinguish them from the more utilitarian workers.
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i j

l k

Figure 1
Examples of the diversity of structure and function of exaggerated traits in insects. Sexually selected,
condition-dependent male traits: (a) forked head horns of the rhinoceros beetle Trypoxylus dichotomus (used
with permission from Shutterstock), (b) the elongated eyespan of the stalk-eyed fly Teleopsis dalmanni (photo
credit: Gerald Wilkinson), (c) the long, protruding thoracic horn of the dung beetle Onthophagus nigriventris
(photo credit: Douglas J. Emlen), and (d ) the elongated mandibles of the stag beetle Lucanus cervus
( c© Henrik Larsson; reproduced with permission from Shutterstock). Traits used in prey capture: raptorial
forelegs of (e) the mantispid Mantispa asphavexelte (photo credit: H. Dumas) and ( f ) the mantid Archimantis
latistyla (photo credit: Tibor Duliskovich). Traits used in locomotion: ( g) elongated midlegs of the
backswimmer Notonecta glauca (photo credit: E. van Herk) and (h) enlarged jumping hindlegs of the clown
cricket Zeromastax spp. (photo credit: Hugo Quintero). Defensive traits evolved in social insects: (i ) soldier
termite with an extended rostrum (nasus) (Tenuirostritermes sp.), enlarged soldier ant head and mandibles of
(j) Pheidole rosae and (k) Pheidole tepicana (photos c© Alex Wild; reproduced with permission), and (l ) enlarged
head and mandibles of soldier termite (Prorhinotermes spp.) ( c© Sydeen; reproduced with permission from
Shutterstock).

Termite soldiers often develop larger bodies and limbs and a more sclerotized cuticle than
workers do. However, the most pronounced soldier-specific traits are associated with the head,
commonly involving an elongation of the apical portion of the mandible (98, 106), often with a
loss of dentition (38), to create weapons that can penetrate an opponent’s cuticle (147). In some
species the soldiers’ mandibles are more elastic and store energy as they are distorted into a locked
position. When the mandibles release, they can stun adjacent opponents (38, 158).

Soldiers in other species exhibit substantial thickening of the head cuticle to form a cylindrical
protrusion of the rostrum. These phragmotic plugs can be positioned to block the entrances to nest
galleries (147), and the width of the soldier head, unlike that of the worker’s, often matches that
of the surrounding tunnels (38). In some species this trait is combined with enlarged mandibles,
whereas in others the mandibles are almost nonfunctional (156).

A third defensive head modification delivers chemical agents. Some termite soldiers have hyper-
trophied frontal glands that synthesize and store chemical weapons that can act as glues, irritants,
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Figure 2
Exaggerated traits that function as signals in the context of sexual selection are always unusually variable in
their expression from male to male. Rhinoceros beetle horns (Dynastes hercules) vary in length more
dramatically than their legs, wings, or overall body size. Hypervariability results from developmental
mechanisms that couple trait growth with nutrition, stress, parasites, and/or physiological condition. In
insects, this appears to involve heightened sensitivity of exaggerated tissues to either insulin-like signaling or
juvenile hormone signaling. Illustrations by David J. Tuss.

toxins, or a combination of all three (147). Many compounds target ants (38), the primary inver-
tebrate predators of termites (73). Some species simply exude the chemicals and transfer them
to enemies through contact; others forcibly eject the frontal gland contents with a contraction
of modified mandibular muscles, spraying opponents from a safe distance (193). Affording even
greater self-protection, some termites have evolved soldiers with an extended rostrum (nasus) (38),
elevating the release point away from the head.

Termite soldiers are often so specialized for defense that they are no longer capable of making
other contributions to their colony. Mandibular modifications can make it impossible for them
to care for immature nestmates, construct or repair tunnels and galleries, or perform other basic
colony tasks carried out by less specialized workers. Many soldiers are even dependent on nestmates
for food because they cannot provision themselves (45).

MECHANISMS OF EXAGGERATED GROWTH

Sexually Dimorphic Exaggerated Traits

Many exaggerated traits are expressed by only a single sex, either because they arose through
reproductive competition that led to divergent expression or because they are wholly sex specific.
Sex-specific expression of exaggerated traits in horned beetles and stag beetles appears to be
regulated, at least in part, by the sex determination pathway gene doublesex (dsx; 65, 80, 90). dsx
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is a member of the highly conserved DNA binding motif gene family (Dmrt), major effectors of
sexual differentiation across diverse animal taxa (97, 118). Male- and female-specific splice variants
of dsx act as transcriptional regulators that modulate tissue-specific sexual differentiation during
development (8, 21, 61, 191).

Specifically, dsx controls sex-specific trait growth by binding cis-regulatory regions of down-
stream target genes (114, 162, 192). Both general and tissue-specific expression modifications of
dsx can contribute to sexual dimorphism in trait size (90, 109, 153, 168) by controlling downstream
patterning genes responsible for trait development, as observed for primary sexual traits such as
genital structures and gonads (5, 24, 87, 153) and secondary traits such as the male-specific sex
combs of some Drosophila flies (6, 168).

The function of dsx has been studied in four beetle species with highly developed weapons:
Onthophagus taurus, O. sagittarius, Trypoxylus dichotomus, and Cyclommatus metallifer (65, 80, 90).
Knockdown by RNAi revealed dsx regulated growth of sexually dimorphic traits, including exag-
gerated horns and mandibles (65, 80, 90). dsx appears to act upstream of other growth-regulating
processes in species with sexually dimorphic traits. For example, knockdown of dsx in stag beetles
reduces juvenile hormone ( JH) sensitivity in the developing mandible tissue of males, reducing
the size of the structure, whereas in females the tissue becomes more sensitive to JH (65). These
results suggest that the mechanism of sexual dimorphism in weapon expression is not a simple
on-or-off growth switch, but rather regulation of sex-specific trait expression. Actual growth of
these traits, and of other, constitutively expressed exaggerated traits, requires locally acting mech-
anisms that lead to heightened proliferation within a particular tissue (161; Figure 3). That is,
once growth is permitted, mechanisms capable of affecting the development of individual body
parts must stimulate the excessive growth. Each of the following mechanisms can produce this
effect, causing particular body parts to grow to extreme proportions.

The Role of Homeotic Genes and Appendage Patterning Genes
in Exaggerated Trait Growth

Insect appendage primordia are patterned by a largely self-contained cascade of gene networks.
Interactions among these patterning gene products, many of which diffuse between cells as locally
acting morphogens, delineate anterior-posterior, dorsal-ventral, and proximal-distal compart-
ments within the field of cells that will form the structure. These gene products also coordinate
growth, determining the shape, size, and function of the final structure (reviewed in 93; Figure 3).
For this reason, appendage patterning genes have been the focus of numerous evo-devo studies of
insect diversity (4, 144). Because shifts in expression of developmental patterning genes can drive
major structural changes, these genes are obvious candidates for the evolution of extreme traits.

Regulation of exaggerated growth of legs by developmental patterning genes has been
shown in many insect species such as water striders (89, 150), grasshoppers (83, 115), crickets
(Gryllidae) (115, 135), cockroaches (Blattidae) (115), and mantids (Mantidae) (115). For these
species, structure elongation is stimulated, at least in part, by changes in expression of the homeotic
genes Ultrabithorax (Ubx; 89, 150) and abdominal-A (abd-A; 115) and the growth-promoting mor-
phogen decapentaplegic (dpp; 83, 135).

A comparative study of 11 insect species (115) showed that expression of Ultrabithorax and
abdominal-A (UbdA, collectively) in the developing hindlimbs correlated with species differences
in hindleg size. In the butterfly Precis coenia, the bumble bee Bombus, the flour beetle Tribolium
castaneum, the lacewing Chrysoperla, the firebrat Thermobia, and the collembolan Folsomia, the
absence of UbdA expression was associated with uniform leg morphology among the three pairs of
legs, consistent with UbdA genes uncoupling growth regulation of hindlegs from other appendages,
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Figure 3
Pathways known to be involved with regulation of exaggerated trait growth. Within developing insect appendages (including
rhinoceros beetle horns, as our example here), a patchwork of partially overlapping gradients of morphogen signals specifies the shape
and approximate final size of the structure (patterning pathway, top right). Overall amounts of growth are modulated (a) in response to
several whole-animal-circulating signals [e.g., insulin-like peptides, juvenile hormone ( JH)] whose levels are sensitive to the nutritional
state of the animal, and (b) by the Fat/Hippo pathway. Amounts of growth are also regulated by the sex-determination pathway (dsx).
Pathway interactions from References 93, 121, 134, 182, 195, and 197. Other abbreviations: Akt, protein kinase B; al, aristaless; bab,
bric-a-brac; dac, dachshund; Dll, Distalless; Dpp, Decapentaplegic; Ds, Dachsous; EGFR, epidermal growth factor receptor; 4E-BP,
4E-binding protein; FOXO, forkhead box O; Fz, frizzled; Hh, Hedgehog; hth, homothorax; Mats, Mob as tumor suppressor; PI3K,
phosphatidylinositol-4,5-bisphosphate 3-kinase; PIP2, phosphatidyl inositol bisphosphate; PIP3, phosphatidylinositol (3,4,5)-
triphosphate; PTEN, phosphatase and tensin homolog; rn, rotund; S6, S6 kinase; TKV, thick veins; TOR, target of rapamycin; tsh,
teashirt; Wg, Wingless.

stimulating enlargement of these legs directly, or both (115). The spatial and temporal pattern
of expression of UbdA in the developing hindlimbs of the cockroach Periplaneta, the praying
mantid Tenodera, the crickets Gryllus and Acheta, and the grasshopper Schistocerca coincided with
disproportionate growth of the adult hindlegs (11, 115).

Ubx regulates the development and growth of the exaggerated midlegs in water striders (89,
150). Water striders are semiaquatic bugs that as a group possess a remarkable diversity of leg
lengths and shapes among species and between sexes. Water striders use their first pair of legs
for prey handling, the second as oars for locomotion, and the third as rudders (78, 176). Changes
in Ubx expression in the water strider are postulated to regulate leg length. In Gerris buenoi, Ubx
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overexpression in the second pair of legs produced exaggerated growth, whereas a loss of Ubx
expression in the first and third pairs of legs reduced growth (89, 150).

These homeotic genes likely act in concert with other effectors to determine appendage growth.
In Drosophila, primordial haltere cells that lack Ubx proliferate, resulting in larger organ size,
compared with cells expressing Ubx normally (32). However, expression of Ubx appears to affect
the growth of the haltere by its action on the TGF-β homolog dpp (32). dpp is a morphogen
that coordinates patterning and growth in animal cells during development (151) and appears to
contribute to exaggerated growth of the hindlegs in both the grasshopper Schistocerca americana (83)
and the cricket Gryllus bimaculatus (135). In Drosophila flies, Ubx reduces both dpp production and
mobility through enhanced expression of the dpp receptor, thick veins (32). This finding strongly
suggests that interactions between upstream genes, such as Ubx, and downstream regulators of
cell growth and proliferation, such as dpp, ultimately specify the final size and shape of a structure.

Although details vary by species, all exaggerated traits examined thus far are formed via this same
homeotic gene and appendage patterning network. Interactions among these genes specify the
identity of each structure and likely coordinate, to some extent, their final relative sizes. The studies
mentioned above suggest that altered activity of Ubx/UbdA and dpp can contribute directly to the
evolution of disproportionate growth in at least some insect structures, including beetle horns
(183). However, growth of tissues in insects and other animals is usually modulated by signaling
from additional physiological pathways, and these mechanisms, too, can lead to exaggerations.

Some Exaggerated Traits Exhibit Heightened Sensitivity
to Insulin/IGF Signaling

The insulin/insulin-like signaling (ILS) pathway is a well-studied, highly conserved physiolog-
ical pathway that transduces the nutritional status of an individual to its cells and functions in
metabolism, aging, reproduction, and growth (25, 26, 194). We (181) have reviewed in detail
the ILS pathway with regard to its role in the growth of condition-dependent sexually selected
exaggerated traits, and Koyama et al. (99) have reviewed ILS and target of rapamycin (TOR) sig-
naling in the regulation of nutrition-dependent, developmentally plastic, organ-specific responses
in insects. Here we summarize these findings and discuss additional case studies.

The ILS pathway likely contributes to exaggerated growth in a diversity of vertebrate and
invertebrate structures. For example, insulin-like growth factor 1 (IGF1) levels are positively
correlated with both body and antler size in deer, and IGF in vitro stimulates antler cell growth (9,
40, 167). Within invertebrates, particularly arthropods, numerous members of the ILS pathway,
from ligands (insulin-like peptides, ILPs) and receptors (InR) to downstream effectors (FOXO),
control condition-dependent exaggerated trait growth in the enlarged chelae of male crabs and
shrimp (178, 179), the enlarged head and mandibles of termite soldiers (71), and the horns of
beetles (53, 103).

A key characteristic of the ILS pathway is that it integrates physiological condition and
metabolism with growth in a condition-dependent manner. Well-fed and unstressed individuals
have increased levels of IGFs/insulin/ILPs relative to poorly fed, diseased, or stressed individuals,
resulting in differential growth (16, 39, 170). How these signals are interpreted within an indi-
vidual is critical to the evolution of exaggerated trait growth. For example, downstream signaling
cascades of the ILS pathway act in tissue- and cell-specific manners (25, 26, 35), such that the
nutrition- and condition-dependent plasticity of a trait is determined by its relative sensitivity to
ILS signaling (53, 170, 194). In fruit flies and rhinoceros beetles, male genitalia are insensitive to
the ILS pathway and grow to a specific size regardless of the animal’s physiological condition. In
contrast, wings, which are moderately sensitive to ILS signaling, grow larger in large, well-fed
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individuals than in smaller, poorly fed individuals (53, 170). In the Asian rhinoceros beetle, Try-
poxylus dichotomus, the male head horn is more sensitive to signaling through the ILS pathway
than other traits are, resulting in unusually rapid growth in the largest, best-fed males to produce
extreme weapons (53).

ILS signaling also contributes to exaggerated growth in the heads of termite soldiers, although
the soldiers live in a nutritionally stable environment. In this case, the ILS pathway appears to act
as an intermediary between the environmental and hormonal milieus that control soldier-specific
trait growth. Several genes in this pathway are upregulated in mandibular epithelial tissues of
the damp-wood termite, Hodotermopsis sjostedti, and disruption by RNAi can prevent mandibular
elongation (71). Although the ILS pathway is normally responsive to nutritional signals, it appears
to have evolved a sensitivity to colony signals in termites and contributes to socially mediated caste
differentiation in honey bees (1, 30, 37, 131, 187) and ants (108, 113, 139). Activation of the ILS
pathway can stimulate cell growth and protein synthesis (69, 155), and it modulates circulating
JH, possibly by triggering the release of neuropeptides that influence JH production (177). As
this example suggests, ILS signaling and TOR signaling (99) control production of morphogenic
hormones that influence body size and shape.

Hormonal Regulation of Exaggerated Trait Growth

Hormones regulate growth, proliferation, metamorphosis, and myriad other developmental and
physiological functions in insects. The two most important effector hormones are JH and ecdys-
teroid, which, through downstream actions, regulate growth, molting, metamorphosis, and re-
production (132). Not surprisingly, these hormones appear to regulate growth in at least some
exaggerated insect structures.

JH has diverse functions during insect development (82, 132). Its classic roles are to ensure a
stationary molt when titers are high (82, 132, 152) and to regulate developmental switches between
alternative phenotypes (70, 133). But JH can also stimulate cell proliferation (82, 132, 152) and
link trait growth with nutrition (48, 175, 122). Perturbations to JH affect the size of a number of
exaggerated insect traits including eyestalks of stalk-eyed flies (57), mandibles of stag beetles (64)
and flour beetles (136), and horns of dung beetles (51, 128, 159).

As with ILS signaling, tissue-specific responses to JH render some traits more sensitive than
others. Coordinated expression of suites of functionally related traits may result from shared
responses to JH. For example, in the broad-horned flour beetle, Gnatocerus cornutus, application
of a JH analog ( JHA) stimulates growth not just of enlarged mandibles but also of the head and
prothorax, which mechanically support the enlarged mandibles (136). However, the same JHA
application produced smaller elytra and wings and had no effect on legs (136), demonstrating
differential trait sensitivity to JH. Varied interpretation of JH signaling at the tissue and cellular
levels may result from varied expression of the JH receptor (23, 95, 107) or from tissue-specific
coupling to other signaling cascades such as the dsx and ILS pathways (48, 65, 99, 160, 164).

Weapon-specific sensitivity to JH signaling is seen in the dung beetle Onthophagus taurus
and the stag beetle Cyclommatus metallifer, in which JHA stimulated weapon growth in males
but not females (50, 64). In addition, JH titer did not differ between the sexes during the JH-
sensitive period (64), suggesting sexual dimorphism in weapon size is influenced by differential
responsiveness to JH. Although sex-specific hormone action is widespread in insects, these data do
suggest that the JH signaling pathway is a plausible mechanism for the evolution of exaggerated
traits.

Termite soldiers exhibit tissue-specific modulation of exaggerated growth by JH signaling.
This caste is produced by changes during successive molts, moving away from the utilitarian
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phenotype typical of the worker caste toward species-specific soldier traits. The switch from
worker to soldier development appears to be triggered by social cues mediated by increases in
circulating JH (reviewed in 15, 125). As with beetle mandibles, termite tissues appear to differ
in their response to JH in ways that result in coordinated expression of suites of functionally
related traits. For example, in Hospitalitermes medioflavus, soldiers have an enlarged head with a
long nasus and regressed mandibles. The nasus originates from the equivalent of an imaginal
disc that forms under the cuticle of the head capsule (124). JH stimulates nasus elongation and
simultaneously promotes selective apoptosis of mandibular tissue. Together these divergent tissue
responses produce a functional soldier morphology (172).

JH does not appear to act alone, however. In termites, molts are directed by an interaction
between JH and ecdysteroid. The specific modulatory role of ecdysteroids is unknown, but they ap-
pear to enhance mandible development and cuticle deposition in soldiers of Macrotermes michaelseni
(141) and may contribute to the elongation of the tissue that forms the nasus (123). Ecdysteroids are
also hypothesized to play a role in the programmed cell death leading to mandible regression (172).

LINKING MECHANISM WITH FUNCTION

Ecological forces selecting for extreme trait development vary considerably, and as a result,
different underlying regulatory mechanisms may have been favored. Thus, whereas some genes
and pathways may be responsible for exaggerated features in one species, they may not influence
similar traits in another. In particular, we argue that mechanisms of exaggeration of sexually
selected structures are likely to have co-opted pathways very different from those regulating the
expression of prey-capture or locomotor traits. Although sexual selection may lead to extreme
trait size in a species, such that traits like eyestalks or tusks or horns are larger in sexually selected
species than in related species lacking intense sexual selection, not all individuals within the
sexually selected species carry full-sized versions of the structure. In fact, one of the hallmarks
of intense sexual selection is that only a few individuals wield a highly exaggerated structure.
Additionally, the growth of these sexually selected traits is influenced more strongly by exogenous
stressors than is the growth of other body parts—they exhibit heightened condition sensitivity (13,
31, 53, 92). Thus, only the dominant, best-conditioned individuals produce full-sized versions of
the trait, whereas the remainder have modest or rudimentary versions (Figure 2). Even subtle dif-
ferences in state translate into conspicuous differences in the final dimensions of the ornament or
weapon.

Heightened condition-sensitive expression and hypervariability between individuals are pre-
cisely the properties that make these traits reliable and informative signals of quality in the context
of female choice of mates or male assessment of rival males (14, 81, 85, 91, 119, 154, 157). Thus,
an understanding of the nature of sexual selection helps explain critical properties shared by exag-
gerated male ornaments and weapons, and these properties in turn provide clues to the most likely
underlying mechanisms of growth. For example, although patterning genes no doubt contribute
to the regulation of growth in all insect structures, changes in the activity of these genes are not
likely to be the primary route to extreme growth in sexually selected structures. Instead, we predict
that changes in tissue sensitivity to whole-animal signals of nutritional state or quality will allow
evolutionary increases in the sizes of sexually selected traits. The extreme traits derived from these
changes to sensitivity would be favored because they are reliable signals of overall male quality.
Both ILS and JH act as whole-animal signals, communicating nutrition and physiological condi-
tion to developing tissues, and increased regional sensitivity to either or both signals could result in
the evolution of traits that are extreme in both size and variability. For example, rhinoceros beetle
horns are sensitive to ILS (53) but not to JH, stag beetle mandibles are sensitive to JH but not to
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ILS (64), and dung beetle horns are sensitive to both ILS and JH (50, 52, 103). These findings sug-
gest that each beetle lineage arrived at weapon exaggeration through a different nutrition-sensitive
mechanism.

Unlike weapons and ornaments of sexual selection, exaggerated claspers, proboscises, jumping
legs, and ovipositors (104) are not used as intraspecific signals. These traits are exaggerated in
individuals of all body sizes. Heightened condition-sensitive growth and hypervariability in ex-
pression would not be beneficial to these traits as they are for sexually selected signals. Indeed,
excessive plasticity or variability may detract from their performance. Although the field of re-
search is nascent, we have seen already that the exaggerated growth of hindlegs in crickets and
grasshoppers, and elongated midlegs in water striders, results primarily from altered expression of
appendage patterning genes, a constitutive mechanism likely to generate extreme trait sizes in all
individuals regardless of sex or body condition (83, 89, 115, 135, 150). Although growth of these
traits may be sensitive to nutrition signals such as JH and/or IGF, as indeed are the majority of
body parts in insects, we do not expect to see heightened sensitivity in these exaggerated structures
relative to other body parts.

The weapons of soldier insects also do not function as intraspecific signals, and they are not
likely to benefit from extreme variability in size from one soldier to the next. Thus, at first glance,
it would seem that the evolution of exaggerated soldier morphologies should also most likely
result from constitutive mechanisms such as appendage patterning, rather than from changes in
tissue sensitivity to circulating nutrition-sensitive signals. However, social insects develop under
extraordinary circumstances. Developing soldiers are fed by workers within the colony, providing
a highly predictable nutritional environment. In these unusually stable developmental environ-
ments, an increase in sensitivity to nutrition within the weapon tissue may be an ideal route to the
evolution of trait exaggeration, generating extreme trait sizes in all soldiers without the hypervari-
ability observed in other insects. Interestingly, it now appears that weapons of termite soldiers, at
least, are sensitive to both JH and ILS signaling (28, 29, 71, 171).

CONCLUSIONS

Exaggerated structures function in a variety of ecological contexts, and these contexts, in turn,
favor very different properties of expression: extreme plasticity and among-individual variability
in some cases, for example, but canalization and minimal variability in others. Linking ecological
contexts such as sexual signaling, prey capture, locomotion, and colony defense with specific types
of underlying developmental mechanisms promises to reveal much more than the alleles and
genes responsible for morphological evolution; it promises insight into why particular types of
pathways underlie the evolution of each type of structure—why, for example, mutations in genes
affecting tissue-level responses to whole-animal signals of nutrition or condition might underlie
the evolution of exaggerated size in ornaments and weapons of sexual selection, whereas mutations
in genes acting in within-tissue patterning mechanisms underlie the evolution of extreme size in
locomotor or prey-capture traits.

Despite their compelling biology and fantastic diversity, very few species with exaggerated
morphological structures have been studied at the genetic or physiological level. However, we
suggest that this field is poised to make significant contributions to our understanding of how
selection shapes the evolution of animal form.
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60. Ge D, Chesters D, Gómez-Zurita J, Zhang L, Yang X, Vogler AP. 2011. Anti-predator defence drives

parallel morphological evolution in flea beetles. Proc. R. Soc. B 278:2133–41
61. Gempe T, Beye M. 2011. Function and evolution of sex determination mechanisms, genes and pathways

in insects. Bioessays 33:52–60
62. Gibbs GW. 2002. A new species of tusked weta from the Raukumara Range, North Island, New Zealand

(Orthoptera: Anostostomatidae: Motuweta). N.Z. J. Zool. 29:293–301
63. Gittleman SH. 1974. Locomotion and predatory strategy in backswimmers (Hemiptera: Notonectidae).

Am. Midl. Nat. 92:496–500
64. Gotoh H, Cornette R, Koshikawa S, Okada Y, Lavine LC, et al. 2011. Juvenile hormone regulates

extreme mandible growth in male stag beetles. PLOS ONE 6:e21139
65. Gotoh H, Miyakawa H, Ishikawa A, Ishikawa Y, Sugime Y, et al. 2014. Developmental link between sex

and nutrition; doublesex regulates sex-specific mandible growth via juvenile hormone signaling in stag
beetles. PLOS Genet. 10:e1004098

66. Griffiths D. 1980. The feeding biology of ant lion larvae: prey capture, handling and utilization. J. Anim.
Ecol. 49:99–125

67. Gronenberg W. 1996. Fast actions in animals: springs and click mechanisms. J. Comp. Physiol. A 178:727–
34

68. Hanley RS. 2001. Mandibular allometry and male dimorphism in a group of obligately mycophagous
beetles (Insecta: Coleoptera: Staphylinidae: Oxyporinae). Biol. J. Linn. Soc. 72:451–59

69. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. 1998. Amino acid sufficiency and
mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem.
273:14484–94

70. Hartfelder K, Emlen DJ. 2011. Endocrine control of insect polyphenism. In Insect Endocrinology, ed. LI
Gilbert, pp. 464–522. Boston: Elsevier

71. Hattori A, Sugime Y, Sasa C, Miyakawa H, Ishikawa Y, et al. 2013. Soldier morphogenesis in the damp-
wood termite is regulated by the insulin signaling pathway. J. Exp. Zool. 320B:295–306

72. Heinze J, Hölldobler B, Yamauchi K. 1998. Male competition in Cardiocondyla ants. Behav. Ecol. Sociobiol.
42:239–46

73. Hölldobler B, Wilson EO. 1990. The Ants. Cambridge, MA: Harvard Univ. Press
74. Holm E. 1993. On the genera of African Cetoniinae. II. Eudicella White, and the related genera with

horned males (Coleoptera: Scarabaeidae). J. Afr. Zool. 107:65–81
75. Hongo Y. 2007. Evolution of male dimorphic allometry in a population of the Japanese horned beetle

Trypoxylus dichotomus septentrionalis. Behav. Ecol. Sociobiol. 62:245–53
76. Hosoya T, Araya K. 2005. Phylogeny of Japanese stag beetles (Coleoptera: Lucanidae) inferred from

16S mtrRNA gene sequences, with reference to the evolution of sexual dimorphism of mandibles. Zool.
Sci. 22:1305–18

www.annualreviews.org • Exaggerated Trait Growth in Insects 467

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

01
5.

60
:4

53
-4

72
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 b
y 

D
r.

 D
ou

gl
as

 E
m

le
n 

on
 0

1/
20

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



EN60CH24-Emlen ARI 26 November 2014 14:55

77. Howden HF. 1985. A revision of the Australian beetle genera Bolboleaus Howden and Cooper, Blackbolbus
Howden and Cooper, and Bolborhachium Boucomont (Scarabaeidae: Geotrupinae). Aust. J. Zool. 111:1–
179

78. Hu DL, Chan B, Bush JWM. 2003. The hydrodynamics of water strider locomotion. Nature 424:663–66
79. Hunt J, Simmons LW. 2001. Status-dependent selection in the dimorphic beetle Onthophagus taurus.

Proc. R. Soc. B 268:2409–14
80. Ito Y, Harigai A, Nakata M, Hosoya T, Araya K, et al. 2013. The role of doublesex in the evolution of

exaggerated horns in the Japanese rhinoceros beetle. EMBO Rep. 14:561–67
81. Iwasa Y, Pomiankowski A. 1999. Good parent and good genes models of handicap evolution. J. Theor.

Biol. 200:97–109
82. Jindra M, Palli SR, Riddiford LM. 2013. The juvenile hormone signaling pathway in insect development.

Annu. Rev. Entomol. 58:181–204
83. Jockusch EL, Nulsen C, Newfield SJ, Nagy LM. 2000. Leg development in flies versus grasshoppers:

Differences in dpp expression do not lead to differences in the expression of downstream components of
the leg patterning pathway. Development 127:1617–26

84. Johnson LK. 1982. Sexual selection in a brentid weevil Brentus anchorago. Evolution 36:251–62
85. Johnstone R. 1995. Sexual selection, honest advertisement, and the handicap principle: reviewing the

evidence. Biol. Rev. 70:1–65
86. Katsuki M, Yokoi T, Funakoshi K, Oota N. 2014. Enlarged hind legs and sexual behavior with male-male

interactions in Sagra femorata. Entomol. Sci. In press
87. Keisman EL, Christiansen AE, Baker BS. 2001. The sex determination gene doublesex regulates the

A/P organizer to direct sex-specific patterns of growth in the Drosophila genital imaginal disc. Dev. Cell
1:215–25

88. Kelly CD. 2006. Fighting for harems: assessment strategies during male-male contests in the sexually
dimorphic Wellington tree weta. Anim. Behav. 72:727–36

89. Khila A, Abouheif E, Rowe L. 2009. Evolution of a novel appendage ground plan in water striders is
driven by changes in the Hox gene Ultrabithorax. PLOS Genet. 5:e1000583

90. Kijimoto T, Moczek AP, Andrews J. 2012. Diversification of doublesex function underlies morph-, sex-,
and species-specific development of beetle horns. Proc. Natl. Acad. Sci. USA 109:20526–31

91. Kirkpatrick M. 1982. Sexual selection and the evolution of female choice. Evolution 36:1–12
92. Knell RJ, Fruhauf N, Norris KA. 1999. Conditional expression of a sexually selected trait in the stalk-eyed

fly Diasemopsis aethiopica. Ecol. Entomol. 24:323–28
93. Kojima T. 2004. The mechanism of Drosophila leg development along the proximodistal axis. Dev. Growth

Differ. 46:115–19
94. Koning JW, Jamieson IG. 2001. Variation in size of male weaponry in a harem-defence polygynous

insect, the mountain stone weta Hemideina maori (Orthoptera: Anostostomatidae). N.Z. J. Zool. 28:109–
17

95. Konopova B, Jindra M. 2007. Juvenile hormone resistance gene Methoprene-tolerant controls entry into
metamorphosis in the beetle Tribolium castaneum. Proc. Natl. Acad. Sci. USA 104:10488–93

96. Kopp A. 2011. Drosophila sex combs as a model of evolutionary innovations. Evol. Dev. 13:504–22
97. Kopp A. 2012. Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet.

28:175–84
98. Koshikawa S, Matsumoto T, Miura T. 2002. Morphometric changes during soldier differentiation of

the damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae). Insectes Soc. 49:245–50
99. Koyama T, Mendes CC, Mirth CK. 2013. Mechanisms regulating nutrition-dependent developmental

plasticity through organ-specific effects in insects. Front. Physiol. 4:263
100. Kral K, Vernik M, Devetak D. 2000. The visually controlled prey-capture behaviour of the European

mantispid Mantispa styriaca. J. Exp. Biol. 203:2117–23
101. Kukuk PF. 1996. Male dimorphism in Lasioglossum (Chilalictus) hemichalceum: the role of larval nutrition.

J. Kans. Entomol. Soc. 69:147–57
102. Lambert EP, Motta PJ, Lowry D. 2011. Modulation in the feeding prey capture of the ant-lion, Myrmeleon

crudelis. J. Exp. Zool. 313A:1–8

468 Lavine et al.

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

01
5.

60
:4

53
-4

72
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 b
y 

D
r.

 D
ou

gl
as

 E
m

le
n 

on
 0

1/
20

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



EN60CH24-Emlen ARI 26 November 2014 14:55

103. Lavine LC, Hahn LL, Garczynski SF, Warren IA, Dworkin IM, Emlen DJ. 2013. Cloning and charac-
terization of an insulin receptor gene from the horned scarab beetle Onthophagus nigriventris (Coleoptera:
Scarabaeidae). Arch. Insect Biochem. Physiol. 82:43–57
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