1
 Montana Department of Mathematical Sciences

A Newsletter for Alumni, Faculty, Staff, and Friends
Fall 2005

Two New Retirees

by Jim Hirstein

Two of our long-serving faculty became the newest Professors Emeriti in the Department of Mathematical Sciences this past spring.

Rudy Gideon retired after 35 years on the faculty. He earned his PhD in Statistics from the University of Wisconsin in 1970. That fall, he came to the University of Montana as an Assistant Professor. He was promoted to Associate Professor in 1974 and Full Professor in 1979. Rudy taught a broad range of statistics courses for the department, from large-lecture service courses to advanced graduate seminars. He worked hard to develop our introductory probability course for

students preparing to study statistics. For the past seven years, he also designed and taught our specialized

course - N umbers as N ews - for Journalism majors. His research led (Continued on page 5: Retirees)

Cutting Cake for Greedy People

by Lily Eidswick

The Department of Mathematical Sciences and its Math 107 students were in for a special treat when
Ed Burger, large knife in hand, came to UM last spring to give a fascinating lecture on how to slice up scarce resources fairly. The colloquium was the culmination of a 3-day visit by Dr. Burger, Professor and Chair of the Mathematics Department at Williams College. "Math Ed", as he likes to call himself, has written numerous articles, books and videos and is one of the authors of our current Math 107 text, The H eart of M athematics.

In terms of cake slicing, the fair division problem may be stated as follows: How can a cake be divided among n people so that everyone is satisfied with the division? Considering that different people are likely to have different value systems, the problem seems impossibly difficult. For instance, how can we fairly divide a cake into three pieces if one person cares only for frosting, another for the name written on the cake, and the third for eating as much cake as possible? Starting with the simplest cases $\mathrm{n}=1$ and $\mathrm{n}=2$ and taking into
consideration all possible value systems, Ed walked the audience through cake-drooling solutions. The case n $=3$ reveals a subtle trap as well as the depth of thegeneral problem. At this point in the talk, Ed held the knife above the cake near one edge and slowly moved it toward the opposite edge instructing the audience to call out

"Stop!" when they thought the portion to the left of the knife represented a fair share. The cake was then cut, leaving the remaining portion to an "I-cut, you-choose"
(Continued on page 3: Cutting Cake)

Chairs' Notes

by David Patterson
As the new department Chair, I'm happy to announce a bit of news at last we will be having an elevator added to the Math Building this spring or summer. We had hoped that the elevator could be part of an addition with much needed classroom and office space. That would be a more efficient use of UM 's $\$ 600,000$ allocation for just the elevator. However, there is no additional money unless we raise it ourselves, a task we considered infeasible in the short time frame. At least our classrooms, offices, and computer labs will finally be fully accessible.

I became Chair on July 1 succeeding Jim Hirstein, who stepped down after 6 years of hard work. I would not have survived these first few months without Jim's help, and I have consulted him regularly on all sorts of matters. I have come to realize that perhaps Jim's best quality as an administrator was to quietly diffuse potential problems without even letting the rest of us know what was going on. That's a skill I'm still working on!
by Jim Hirstein
At our graduation celebration last May, the faculty of the department presented me with a beautiful plaque that says, "In Grateful A ppreciation for six years of generosity and dedicated service as Chair of the Department of M athematical Sciences, 1999-2005." In July we welcomed Dave Patterson as our new Chair. I want to take this opportunity to paraphrase a few of the remarks I made to our graduates last spring.

Back in the 1970s, there was a book called M athematics in a Changing W orld. There have probably been dozens of books with similar titles and themes over the years. This one caught my eye because in the preface, the authors warned the reader that "although mathematical truth may be beautiful, it can only be glimpsed after a lot of hard thinking." How many times have teachers said that to students? We do ask them to do hard thinking, and we ask them to broaden their thinking. During their lives, they will see mathematics that no one has thought of yet today. I hope we have prepared them to understand these new ideas.

Ron Graham is reported to have said it would be very discouraging if somewhere down the line you could ask a computer if the Riemann Hy pothesis is correct and the computer replied "Yes, it is correct, but you wouldn't understand the proof." When our students leave our classroom, they (and we) may think something is finished. But if we have done our jobs right, they are now ready to begin. Gauss said "it is not the knowledge, but the act of learning, not the possession, but the act of getting there, which grants the most enjoyment." If nothing else, I hope we can give our students the ability to keep learning and getting there.

I will close with the best math teacher joke I've heard in years. Here is how we admonish our students: "If I told you n times, I'vetold you $n+1$ times."

A nd finally, let me use this column to return the thanks represented in the plaque that the faculty gave me. I have enjoyed wide support from our faculty and staff and from the deans. I feel privileged to have been able to work with them. I am honored to meet and share memories with alumni and friends through the pages of this newsletter. And last in my mention, but first in my heart, are the students at The University of Montanawithout you there would be nothing here. To all of you, I thank you for hel ping me reach far beyond where I ever thought I would go when I sat there in an A nalytic Geometry class fortysomething years ago.

Faculty:
David Patterson, Chair
Mark Kayll, A ssoc. Chair \& N ewsletter Ed.
John Bardsley, A pplied M athematics
Rick Billstein, M athematics Education
Lauren Fern, Lecturer
Jon Graham, Statistics
Jennifer Halfpap, A nalysis
Jim Hirstein, M athematics Education
Leonid Kalachev, A pplied M athematics
Mark Kayll, Combinatorics
Libby Knott, M athematics Education
Jenny McNulty, Combinatorics
George McRae, O ptimization
Adam Nyman, A Igebra
David Patterson, Statistics
Jakayla Robbins, Combinatorics
M att Roscoe, Lecturer
Greg St. George, A nalysis
Regina Souza, Lecturer
Bharath Sriraman, M athematics Education
Brian Steele, Statistics
Emily Stone, A pplied M athematics
Karel Stroethoff, A nalysis
Thomas Tonev, A nalysis
Carol Ulsafer, Lecturer
Nikolaus Vonessen, A Igebra

Faculty Emeriti:

William Ballard
Johnny Lott
Mary Jean Brod
Charles Bryan
Bill Derrick
Rudy Gideon
Stanley Grossman Gloria Hewitt Merle Manis Robert McKelvey William Myers Howard Reinhardt GeorgeVotruba Keith Yale Don Loftsgaarden

To contact the Department:
Dept. of M athematical Sciences
The University of M ontana
Missoula, MT 59812-0864
Phone: 406-243-5311
Website: www.umt.edu/math
Please send address changes to M elissa Tomczak, Secretary, at the address above or e-mail mtomczak@mso.umt.edu.

New Tenure-track Faculty for 2005-06

by Mark Kayll
As a result of its $2004-05$ personnel searches, the department was fortunate to add two new faculty to its ranks: one in analysis and one in combinatorics.

Jennifer Halfpap

Dr. Halfpap completed her PhD in complex analysis at the University of Wisconsin earlier this year. In addition to serving as a Teaching A ssistant in Madison and eventually as a TA Coordinator there - she also held

New Assistant Professor Jennifer H alfpap a position in 2001 as an Instructor at her undergraduate alma mater, Ripon College, Wisconsin. We're delighted that she has now joined theUM faculty.

Jennifer's research interests include harmonic analysis and several complex variables, and a couple of her papers-on 'tube like CR manifolds' -have already been published in mathematical journals. UM 's first analysis hire in more than ten years, Dr. Halfpap is being received enthusiastically by the other A nalysis faculty, Professors Stroethoff and Tonev.

Once in Missoula, she wasted no time contributing more broadly to the department. In September, she gave a talk entitled How big is the Cantor set? in the Undergraduate Math Seminar. In it, she explored several ways of quantifying the size of a set (e.g. via cardinality, measure, and dimension) and revealed some of the surprising realities about the infamous Cantor set.

Jakayla Robbins
Dr. Robbins earned a PhD in matroid theory from the University of Kentucky in 2003. In the short time since then, Jakayla has squeezed in stints as a Postdoctoral Visitor (at her alma mater), a Visiting Assistant Professor (at 'Ole Miss', the University of
 Mississippi), and now as a tenure-track Assistant Professor at UM. Her research interests center on matroids- including their representation theory and orientability-but also stretch more broadly into general combinatorics, e.g., pattern avoidance. Thus, Dr. Robbins' specializations nicely complement those of the three other Combinatorics \& Optimization faculty (Professors Kayll, McNulty, and McRae).

Early this fall, Jakayla jumped right in and started making a positive impact on the $C \& O$ seminar. The primary paper under study, on combinatorial game theory, happened to be co-authored by a colleague, Richard Ehrenborg, from Dr. Robbins' former travels. So she quickly arranged for NSF-EPSCoR funding (federal monies administered locally) to help support a visit by Professor Ehrenborg from the University of Kentucky. Landing this distinguished visitor to coincide with the study of one of his papers was a small coup unto itself.

The department extends warm welcomes to Assistant Professors Halfpap and Robbins.
(Continued from page 1-Cutting Cake)
method. Although this $\mathrm{n}=3$ division method might at first glance seem fair, Ed pointed out that it could easily result in envy by one or more of the participants. Thus one is led to a modified search for a "fair but not greedy" division algorithm. The final result, with approximation error dependent only on the thickness of the knife, was more than mathematically satisfying: the audience even got to eat the cake!

As noted, the cakecutting colloquium was the culmination of a 3day visit to the department. Ed's other activities included taking charge of a couple of Math 107 classes and meeting with the Math 107 staff. His passion for teaching came through in the classroom. The students found him charming and humorous and were enthusiastic about his presentations. Although Ed uses humor in his approach to mathematics, he takes his teaching seriously. The session with the M ath 107 instructors provided an excellent exchange of ideas on what should be taught in a "contemporary" math course as well as how those ideas should be presented.

Burger capped off his visit with a hike up to the " M " on Mount Sentinel plus a Greenough Park/ Rattlesnake bicycle ride.

New Faculty Member in Applied Math and Dynamical Systems

by Leonid Kalachev
Associate Professor Emily Stone joined the faculty last year in the Applied Mathematics group. She has a PhD from Cornell University in Theoretical and Applied Mechanics, where her advisor was Philip Holmes, now at Princeton University. Her thesis focused on the formation and analysis of reduced models for turbulence, and since then she has pursued research in the general areas of modeling and applied dynamical systems. Prior to coming to the University of Montana she was an Associate Professor in the Department of Mathematics and Statistics at Utah State University, where she was part of a small group that established an industrial mathematics program with a master's degree. Emily's research is inherently interdisciplinary, and has involved modeling such diverse systems as machining dynamics (at The Boeing Company) and the polymerase chain reaction (in collaboration with Idaho Technology, a biotech firm in Salt LakeCity).

Since her establishment in Montana, Dr. Stone has initiated ties with the Center for Structural and Functional Neuroscience (CSFN) through an NSF Interdisciplinary

Grant in the Mathematical Sciences (IGMS). This commenced at the start of the present academic year. Dr. Stone is currently collaborating with UM colleague Dr. John Bardsley and a graduate student on a problem in the dynamics of networks of leaf stomata in respiring leaves.
 She explains that "research is my focus, teaching keeps me grounded, and at UM I have found talented students to work on projects, allowing me to combine the two, a nice happenstance in mathematics".

Tibetan Mathematician Visits UM

by Thomas Tonev

As a result of a fortunate cooperation between the Office of International Programs and the Department of Mathematical Sciences, an ethnic Tibetan Mathematician visited the University of Montana. Guru K yi is a Professor of Mathematics at the Northwest Minority University in Lanzhou, China, where she teaches mathematical analysis, advanced mathematics, elementary geometry, history of mathematics, and mathematics education. She earned her BA (1986) in M athematics Education (on Tibetan and Chinese bilingual education) from the Minority Teachers College at the Qinghai Teachers University, China. Her MA is in Computer Science from the Northwest Minority University in Lanzhou for Nationalities. Currently she is involved with a research program on Tibetan Information Technology-M athematics Curriculum and Theory, run by Beijing

Capital Teachers University and Qinghai Teachers University. Professor Kyi was instrumental in the creation of the first calculus textbook in Tibetan.

The city of Lanzhou is in Gansu province of China. It lies on the ancient Silk Road, the only surface trade road connecting Europe and China during the middle ages. The Yellow River runs through it. The Discovery Channel's Inside Guide China reads: "Surrounded on all sides by mountains, present-day Lanzhou is a depressing industrial city, smothered in a layer of thick grey smog. (In an only China turn, the local government began to level the surrounding mountains in 1997 to try to ease the pollution)".

Besides Chinese students, the Northwest Minority University in Lanzhou educates people from many ethnic minorities: Tibetans, Mongolians, Uigurs, etc. Minority students in

China are at a disadvantage in comparison to their ethnic Chinese counterparts. Written in Chinese, most of the textbooks and supplemental educational materials are inaccessible to non-native speakers. This is why their education lasts one year longer, and the Minority University in Lanzhou has special programs for them.

Guru teaches both Tibetan and Chinese students: the former in Tibetan, the latter in Chinese. She was born in the Tibetan province of Qinghai (or, Amdo in Tibetan), neighboring Gansu province and not far from the Dalai Lama's birthplace, which she has visited several times. Guru in Hindu means spiritual teacher (in Tibetan it is 'lama'). However in official documents her name is replaced by its Chinese version Geriji. I met Guru in the summer of 2002 during the International Mathematics Conference
(Continued on page 5: Tibetan Mathematician)

Combinatorics of Advising

by Mark Kayll

At the university's spring awards ceremony, the 2005 Outstanding Faculty Advising Award was presented to one of our own colleagues.

The nomination letter began, "Professor Jenny
McNulty's commitment to quality advising manifests itself in a striking number of ways. From departmental, to cam-pus-wide, from the local community, to the national stage, and from academics, to all-around character building, Dr. McNulty exemplifies the university citizen that this award seeks to recognize." Besides her departmental advising, Jenny has served as a General Studies Advisor at University College since 1997. At the graduate level, she's supervised six MA and two PhD students. She's also the Faculty Advisor for the UM Women's Hockey Club (since 2000) and for the UM Math Club (since 2002). Professor McNulty's advising impacts have also been felt regionally and nationally; in 2000, she founded and now directs the Pacific Northwest Section Project NExT program (N ew Experiences in Teaching). Through this faculty mentoring program, Dr. McNulty has influenced a new academic generation of advisors. These are just a few of the many highlights that caught the attention of her nominators.

Professor McNulty's acceptance speech folded together interesting advising tidbits with basic combinatorics.
"When I think about advising, I think of possibilities and opportunities. There are so many avenues for a student to explore as they travel on their journey to get an education. As an advisor, I try to help them navigate their trip. As a mathematician, I find the number of possibilities amazing. Did you know.... there are over 54 courses that count towards the general education expressive arts perspective, 90 for literary and artistic studies, 128 for history, 92 for social sciences, 43 for ethics, and 63 for the natural sciences. A quick calculation shows there are over 380 Trillion (3.8 x 1014) ways to take courses in the perspectives AND over 2 Quintillion (2×1018) ways to complete UM's General Education Requirements. (For comparison, the US deficit is $\$ 477$ billion - so this is a billion times the deficit.) Maybe a new university slogan could be: UM - over a billion billion choices!"

The department congratulates Professor McN ulty for her well-deserved award.
(Continued from page 1 - Retirees)
to talks and papers on non-parametric correlation, and he served as a reviewer for many papers in statistical journals. A few years ago, he was instrumental in securing the funding for a large endowment that supports scholarships for our majors. Professor Gideon consulted for many projects around M ontana, served as the principal investigator on a federal grant, and directed the research of more than twenty graduate students.

Johnny Lott retired after 31 years in the department. He completed his PhD at Georgia State University in 1973 and joined the University of Montana as a Visiting Assistant Professor in 1974. Two years later, he joined the tenure-track ranks, was promoted to Associate Professor in 1978, and to Full Professor in 1983. Johnny chaired the department from 1990 to 1992. He built an excellent teaching record and contributed significantly to research in mathematics education. His book for elementary mathematics teachers, now in its eighth edition (with UM colleague Rick Billstein and University of Oregon's Schlomo Leibeskind) has served as the standard in the field for three decades. Over the years, Dr. Lott published many articles and delivered hundreds of presentations to state, national, and international audiences. He was the recipient of numerous research grants at the state and national levels. Most recently, he was co-director of the Systemic Initiative for M ontana M athematics and Science (SIMMS), a seven-year curriculum development grant funded by the National Science Foundation. In 2001, Johnny was elected President of the National Council of Teachers of M athematics, the premier organization in his field. His influence on mathematics teaching, while clearly felt here at UM, extends far beyond. Professor Lott retires truly recognized as an international leader in mathematics education.

The department will not quickly fill the voids created by these recent retirements and it wishes Professors Gideon and Lott the very best as they start down their new life paths.
(Continued from page 4: Tibetan Mathematician)
held in Lhasa, the main city of Tibet. She was the only Tibetan participant with any knowledge of English. The rest of her Tibetan colleagues presented their talks either in Tibetan through a translator or in Chinese at a separate session.

During her UM visit, Ms. Kyi delivered a lecture on Tibetan cultural heritage at the Mansfield Center for Asian and Pacific Studies. She described the cultural and religious importance of Tibetan symbols such as thangkas and stupas. Thangka is a silk, satin or cloth painting scroll with images of Buddha or of life stories of eminent deities, monks, and folk customs. Stupa ('chorten' in Tibetan) is a religious monument symbolizing Buddha's physical presence. Stu-

Graduate D egree Recipients

Name	Degree	Date	Title	Advisor
Robert Barlow, Jr.	M.A.	2003	Course scheduling solution	Dr. McNulty
Lucas A. Casady	M.A.	2004	A symptotic reductions of a model describing facilitated diffusion in membrane transport	Dr. Kalachev
Johnathan Comes	M.A.	2004	Computation on the functor Ext using Groebner bases	Dr. Nyman
Isaac C. Grenfell	M.A.	2004	Robust variogram estimation via rank correlation and median absolute deviation correlation	Dr. Gideon
Joseph Lee Petersen	M.A.	2004	Estimating Pareto P arameters	Dr. Gideon
Brook Russell	M.A.	2004	Issues in classifying ordered categorical data	Dr. Patterson
ChrisAnneClouse	Ph.D.	2004	Greedoid invariants and the greedoid Tutte polynomial	Dr. McNulty
Young-A Choi	M.A.	2005	Group Theory in a Kaleidoscope	Dr. Hirstein
Joran M. Elias	M.A.	2005	A utomated geometric theorem proving: W u's M ethod	Dr. Nyman
Kira Lynn Heater	M.A.	2005	The FDTD M ethod: Computation and A nalysis	Dr. Bardsley
M ohammed Shoeb Saed Khan	M.A.	2005	M athematical analysis of tropospheric chemistry model	Dr. Kalachev
Peter J. M cCauley	M.A.	2005	Dynamics of a single species natural forest in the presence of a disease	Dr. Kalachev
David Perkins	Ph.D.	2005	Investigations of a chip-firing game	Dr. Kayll
Deborah Sloan	Ph.D.	2005	A conflict in values: The dilemma of equity, diversity, and participation in higher mathematics	Dr. Hirstein

(Continued from page 5: Guru Kyi) pas either cover tombs of high lamas, or house sacred religious objects.

Guru also took part in the Women Panel Discussion on International perspectives on Education, organized by the Phi Delta Kappa society and the UM School of Education. There she discussed the problems of hate encountered by Tibetans in primary and high school education.

In her M athematical Sciences ColIoquium, Professor Kyi delivered the lectureTibetan Thangkas, Stupas, A stronomy and M athematics, illustrated with impressive images. In this talk, she unveiled the hidden geometry in thangka images, and surprised many of us with the connections to analytic geometry. In particular, in the con-
struction of stupas, Tibetan masterarchitects used essentially Cartesian coordinates long before their formal introduction by René Descartes in 17th century Europe. The lecture was accompanied by breathtaking oriental images and Tibetan scripts. M oreover, in an only Tibetan way, the measurements and proportions of stupa's design were canonized and sanctified. What makes it 'only Tibetan'? And how were they scanctified and canonized? At the UM M athematics Education Seminar she answered thesequestions and spoke on the past and present of Mathematics Education in Tibet.

Guru Kyi met with many UM faculty members, students, and members of the Missoula community. She also
visited my multi-variable calculus class, attended the 'Problems and Contests' seminar of Professor George M cRae and Dick Lane, and presented a lecture on the history of mathematical knowledge in Tibet to Professor Johnny Lott's H istory of Mathematics class.

The lectures and talks of Guru Kyi at the University of Montana attracted many professors, teachers and students of mathematics and other fields. We were lucky to learn firsthand about the ancient and rich Tibetan culture and the mathematics behind it.

Visiting Faculty

by David Patterson
We are very pleased to have two distinguished visiting faculty in the Department of M athematical Sciences this year.

A natoly Yagola is Professor of Mathematics at Moscow StateUniversity and an internationally known authority in applied mathematics, particularly ill-posed problems and numerical methods. He has authored or coauthored more than 200 papers and 12 monographs. He is teaching two courses in applied mathematics this fall as

John A. Peterson M athematics Education A ward (book award to outstanding senior in mathematics education)
 Sean McGlynn
 G raduate Student
 (\$500 aw ards to two
 Samantha Allen
 Seth Braver
 (\$1600 to \$3200)
 seth Braver
 A aron Luttman
 G raduate Student O utstanding Presentation A aron Luttman

well as conducting joint research with our applied mathematics faculty. He will be here through December.

M achelle Wilson is a statistical ecologist, visiting for the year from the Savannah River Ecology Laboratory of the University of Georgia. Her expertise includes statistical methods in risk analysis and in environmental monitoring, policy and decision-making. In addition to teaching the graduatelevel statistical methods course (for students in the sciences) and our junior-level probability course, she is also participating in the statistics seminar. Her interests complement those of the other statisticians, and they look forward to interacting with Machelle during the coming year.

Math Club Corner
http://www.math.umt.edu/mathclub/

by Cody Ray and Mark Kayll
In the Autumn 2005 semester, the group known as the M ath Club continued its weekly meetings during the Undergraduate M ath Seminar, 34 pm Tuesdays.

This year a new faculty advisor, Dr. Jon Graham, joined Professor Jenny McNulty in leading the seminar, while former co-advisor Professor George McRae continued as an active participant. Club activities included attending lectures by local
and visiting faculty, reading the book Life by the N umbers, by Keith Devlin, taking a field trip to the Missoula Fire Lab, and hosting our annual Gambling Day. The lectures covered topics in pure math (e.g. What is Algebra? by Professor Nikolaus Vonessen), applied math (e.g. M athematical M odeling of Cellular and M olecular Biology, by Associate Professor Emily Stone), and somewhere in between (e.g. Coloring Polynomials, by Assistant Professor Jakayla Robbins). One memorable
guest speaker was Professor Richard Ehrenborg, from the University of Kentucky, whose talk, The M athematics of Juggling, came complete with demonstrations.

The Club thanks all the faculty who generously gave their time to share so many mathematical gems. As always, we invite anyone and everyone to join us for snacks and club activities every Tuesday. You can check the club home page, above, for the schedule.

The University of Montana
D epartment of M athematical Sciences (M M A IO1)
M athematics Building
M issoula, M T 59812-0864

NON-PROFIT ORG.
U.S. POSTAGE

PAID
MISSOULA, MT 59812

