

Doctoral Dissertation Defense "The Szegö Kernel for Non-Pseudoconvex Domains in \mathbb{C}^2 ."

Michael Gilliam Dept of Mathematical Sciences

Thursday, May 12, 2011 1:10 pm in Math 103

There are many operators associated with a domain $\Omega \subset \mathbb{C}^n$ with smooth boundary $\partial\Omega$. There are two closely related projections that are of particular interest. The *Bergman projection* \mathcal{B} is the orthogonal projection of $L^2(\Omega)$ onto the closed subspace $L^2(\Omega) \cap \mathcal{O}(\Omega)$, where $\mathcal{O}(\Omega)$ is the space of all holomorphic functions on Ω . The *Szegö projection* \mathcal{S} is the orthogonal projection of $L^2(\partial\Omega)$ onto the space $H^2(\Omega)$ of boundary values of elements of $\mathcal{O}(\Omega)$. These projection operators have integral representations

 $\mathcal{B}[f](z) = \int_{\Omega} f(w) B(z, w) dw, \quad \mathcal{S}[f](z) = \int_{\partial \Omega} f(w) S(z, w) d\sigma(w),$

where $z \in \Omega$. The distributions B and S are known respectively as the Bergman and Szegö kernels. In an attempt to prove that B and S are bounded operators on L^p , 1 , many authors have obtained size estimates for the kernels <math>B and S for *pseudoconvex* domains in \mathbb{C}^n .

In this thesis, we restrict our attention to the Szegö kernel for a large class of domains of the form $\Omega = \{(z, w) \in \mathbb{C}^2 : Im[w] > b(Re[z])\}$. Such a domain fails to be pseudoconvex precisely when b is not convex on all of \mathbb{R} . In an influential paper, Nagel, Rosay, Stein, and Wainger obtain size estimates for both kernels and sharp mapping properties for their respective operators in the convex setting. Consequently, if b is a convex polynomial, the Szegö kernel S is absolutely convergent off the diagonal only. Carracino proves that the Szegö kernel has singularities on *and off* the diagonal for a specific non-smooth, *non-convex* piecewise defined quadratic b. Her results are novel since very little is known for the Szegö kernel for non-pseudoconvex domains Ω . I take b to be an arbitrary even-degree polynomial with positive leading coefficient and identify the set in $\mathbb{C}^2 \times \mathbb{C}^2$ on which the Szegö kernel is absolutely convergent. For a polynomial b, we will see that the Szegö kernel is smooth off the diagonal if and only if b is convex. These results provide an incremental step toward proving the projection S is bounded on $L^p(\partial\Omega), 1 , for a large class of non-pseudoconvex domains <math>\Omega$.

Dissertation Committee

Jen Halfpap, Chair (Mathematical Sciences), Eric Chesebro (Mathematical Sciences), Michael Schneider (Physics and Astronomy), Karel Stroethoff (Mathematical Sciences), Thomas Tonev (Mathematical Sciences)