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Abstract

Gene duplication may be an important mechanism for the evolution of new functions and for the adaptive modulation of

gene expression via dosage effects. Here, we analyzed the fate of gene duplicates for two strains of a novel group of

cyanobacteria (genus Acaryochloris) that produces the far-red light absorbing chlorophyll d as its main photosynthetic

pigment. The genomes of both strains contain an unusually high number of gene duplicates for bacteria. As has been

observed for eukaryotic genomes, we find that the demography of gene duplicates can be well modeled by a birth–death
process. Most duplicated Acaryochloris genes are of comparatively recent origin, are strain-specific, and tend to be located

on different genetic elements. Analyses of selection on duplicates of different divergence classes suggest that a minority of

paralogs exhibit near neutral evolutionary dynamics immediately following duplication but that most duplicate pairs

(including those which have been retained for long periods) are under strong purifying selection against amino acid change.

The likelihood of duplicate retention varied among gene functional classes, and the pronounced differences between strains

in the pool of retained recent duplicates likely reflects differences in the nutrient status and other characteristics of their

respective environments. We conclude that most duplicates are quickly purged from Acaryochloris genomes and that those

which are retained likely make important contributions to organism ecology by conferring fitness benefits via gene dosage
effects. The mechanism of enhanced duplication may involve homologous recombination between genetic elements

mediated by paralogous copies of recA.
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Introduction

Gene duplication is an important mechanism of gene inno-

vation and genome evolution (Ohno 1970; Taylor and Raes

2004). A substantial fraction of eukaryotic, bacterial, and

archaeal genomes may be composed of divergent paralogs

resulting from gene family expansion (Coissac et al. 1997;

Jordan et al. 2001; Gevers et al. 2004; Makarova et al.

2005), and examples of the role of gene duplicates as

a source of raw material for the origin of evolutionary nov-
elties and diversification abound (e.g., True and Carroll

2002; Irish and Litt 2005; Wagner 2008).

In addition to ancient paralogs, eukaryotic genomes gen-

erally contain a large number of recent duplicates (Lynch and

Conery 2000, 2003). By contrast, although gene duplications

can occur at frequencies as high as 10�3 per gene per
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generation in bacterial genomes (Anderson and Roth 1977;
Haack and Roth 1995; Reams et al. 2010), these duplicates

are quickly purged from the genome unless they confer fit-

ness advantages via dosage effects (i.e., enhanced gene ex-

pression; Roth et al. 1996; Romero and Palacios 1997; Reams

et al. 2010). Consequently, bacterial genomes typically har-

bor few recent duplicates (Hooper and Berg 2003b).

Here, we analyzed the age distributions and selection his-

tories of duplicate genes in the genomes of two strains of
the cyanobacterium Acaryochloris which contain an unusu-

ally large number of recent (i.e., low divergence) duplicates

for bacterial genomes: the previously finished genome of

Acaryochloris strain MBIC11017 (Swingley et al. 2008)

and a draft genome that we have assembled forAcaryochlo-
ris strain CCMEE 5410. Acaryochloris spp. specialize on far-

red wavelengths of solar radiation that are inaccessible to

other photosynthetic organisms through their unique ability
to produce chlorophyll (Chl) d, a structural relative of Chl a,
as the major pigment in photosynthesis (Miyashita et al.

1996; Miller et al. 2005). This recently discovered group

has been detected in diverse marine, freshwater, and terres-

trial habitats (Behrendt et al. 2011) and may make a signif-

icant contribution to the global carbon cycle (Kashiyama

et al. 2008). Strain MBIC11017 was isolated from the Great

Barrier Reef (Miyashita et al. 1996), where Acaryochloris bi-
ofilms commonly develop underneath ascidians (Kühl et al.

2005). Strain CCMEE 5410 was isolated from a benthic epi-

lithic biofilm in the Salton Sea (Miller et al. 2005), a saline,

eutrophic closed basin lake in southern California with major

inputs from agricultural runoff and municipal wastewater.

We report that rates of duplication and duplicate loss fall

within the range of values estimated for eukaryotic rather

than bacterial genomes. Although duplicates may experi-
ence a brief period of relaxed selection, most are rapidly lost

from the genome, and those which are retained are subject

to strong purifying selection. The idiosyncratic duplicate

pools of the respective genomes include many open reading

frames (ORFs) that appear to be important for fitness in the

specific environments from which the strains were derived,

including a large number of duplicates involved in iron ac-

quisition in strain MBIC11017 and an enrichment of dupli-
cated loci involved in heavymetal resistance in strain CCMEE

5410. We conclude with consideration of the mechanisms

which may contribute to the unusual duplication dynamics

of these bacteria.

Materials and Methods

Acaryochloris Strain CCMEE 5410 Genome

Cells were grown, and genomic DNA was isolated as previ-

ously described (Swingley et al. 2008). The CCMEE 5410 ge-

nomewas sequenced on the 454 FLX Titanium platform and

assembled with Roche’s Newbler de novo assembler with

default overlap settings. The JCVI auto-annotation pipeline

was used to identify sequence features and assign func-
tional annotation. Protein-coding sequences were predicted

with Glimmer3 (Delcher et al. 1999), tRNAs were identified

with the tRNAscan tool (Lowe and Eddy 1997), and rRNA

genes and other structural RNAs were identified directly

from Blast (Altschul et al. 1990)matches to Rfam. Functional

annotation of proteins was assigned based on coding se-

quences comparison against the CHAR database of exper-

imentally verified proteins and functional annotations,
TIGRFAM (Haft et al. 2003) and Pfam (Finn et al. 2008) pro-

tein family databases, the PANDA repository of nonredun-

dant protein and nucleotide data, and by computationally

derived assertions including lipoprotein and transmembrane

helix signatures. Assembled contigs greater than 5 kbp in

length were assigned to chromosome or plasmid elements

by a nucmer alignment against the Acaryochloris marina
strain MBIC11017 reference genome in the MUMmer pack-
age (Kurtz et al. 2004).

This whole-genome shotgun project has been deposited

at DNA Data Bank of Japan/EMBL/GenBank under the ac-

cession AFEJ00000000. The version described in this paper

is the first version, AFEJ01000000.

Identification and Analysis of Recent Duplicates

Paralogs within the genomes of Acaryochloris strains CCMEE
5410 andMBIC11017were identified by local BlastP searches

(Altschul et al. 1990) of each inferred protein sequence

against its genome. Because the study was focused on the

pools of recent duplicates, putative paralogs sharing less than

50% amino acid identity were removed from the data set. A

similar search strategy was used to identify shared duplicates

via reciprocal local BlastP searches. ORFs annotated as trans-

posases, integrases, or identified as having significant homol-
ogy (E , 0.05) to insertion sequence (IS) elements by BlastP

against the IS Finder database (www-is.biotoul.fr/is.html)

were also removed, as were gene families with more than

ten paralogs (typically transposases).

Nucleotide alignments of duplicates were obtained by

the manual adjustment of ClustalW automated alignments

(Thompson et al. 1994) using the amino acid alignments as

a guide. Silent site divergence (dS) and replacement site di-
vergence (dN) between aligned nucleotide sequences of du-

plicate pairs were estimated by the maximum likelihood

(ML) procedure implemented in the CODEML program of

the PAML software package (version 3.14; Yang 1997). For

all models, codon usage (the average nucleotide frequencies

at the three codon positions) and transition/transversion bias

were estimated from the data. Only duplicate pairs with dS
, 5 were considered for further analysis.

Most cases involved a duplicate pair resulting from a sin-

gle duplication event. For cases involving more than two pa-

ralogs, we used phylogenetics to distinguish the duplication

events (e.g., resolution of three duplicates by reconstruction

of the two duplication events). Phylogenies of aligned

Miller et al. GBE

602 Genome Biol. Evol. 3:601–613. doi:10.1093/gbe/evr060 Advance Access publication June 21, 2011

 at T
he U

niversity of M
ontana on A

ugust 15, 2011
gbe.oxfordjournals.org

D
ow

nloaded from
 

www-is.biotoul.fr/is.html
http://gbe.oxfordjournals.org/


nucleotide sequences were inferred by ML with PAUP*
(Swofford 1996) according to a model of DNA sequence

evolution selected by hierarchical likelihood ratio tests im-

plemented by Modeltest (Posada and Crandall 1998). For

the ML heuristic search, a starting tree was obtained by ran-

dom sequence addition, and branch swapping was per-

formed by tree bisection and reconnection. The resulting

topology was used to specify the tree for the PAML model

as described above.

recA Phylogeny Reconstruction and Tests of Pro-
tein Adaptation

Nucleotides (1,023) of the recA genes of Acaryochloris and
other representative cyanobacteria were aligned by Clus-

talW (Thompson et al. 1994). A ML tree was reconstructed

with PAUP* as described above according to the general

time reversible (GTR) þ I þ G model of sequence evolution
selected byModeltest (Posada and Crandall 1998) and boot-

strapped 100 times. A Bayesian analysis was performedwith

MrBayes (Huelsenbeck and Ronquist 2001) using the GTRþ
I þ G model. Two independent chains of 1,000,000 gener-

ations of Markov chain Monte Carlo were analyzed, with

trees sampled every 1,000 generations. Chain convergence

was evaluated by the average standard deviation of split fre-

quencies, and the first 20% of trees were discarded as burn-
in. To test for the signature of positive selection during Acar-
yochloris recA diversification, branch-site models of codon

evolution (Yang and Nielsen 2002) were implemented with

PAML. Likelihood scores of nested models which either allow

for a class of positively selected codon sites (i.e., dN/dS . 1)

or constrain dN/dS to be less than or equal to 1 (the nearly-

neutral model) were compared with a v2 test. For branches
of the recA tree for which the nearly-neutral model was re-
jected, a Bayes empirical Bayesian analysis was used to infer

which codon sites belonged to the positively selected class

with high (.95%) posterior probability.

Results and Discussion

Acaryochloris Strain CCMEE 5410 Genome

The Acaryochloris strain CCMEE 5410 genome was pyrose-

quenced to approximately 24� coverage depth, and the re-

sulting genome data assembled into 511 contigs greater

than 500 bp, with an N50 of 37,625 bp. The estimated ge-

nome size of 7.88Mbp is somewhat smaller than that of the

previously finished genome of Acaryochloris strain

MBIC11017 (table 1; Swingley et al. 2008) as well as of a re-

cently described strain isolated from the Great Barrier Reef
for which an unpublished draft genome sequence has been

obtained (;8.37 Mbp; Mohr et al. 2010) but is still consid-

erably larger than those of other unicellular cyanobacteria.

The strain CCMEE 5410 genome likewise contains fewer

predicted ORFs than that of strain MBIC11017. The two ge-

nomes share similar base composition and a high number of

ORFs with significant homology to IS elements (table 1).

The CCMEE 5410 and MBIC11017 genomes share 6,122

putative orthologs, with greater than 25% of predicted

ORFs in each genome absent from the other (table 1).

For the closed MBIC11017 genome, we can identify with

certainty the genetic element on which each of these idio-
syncratic ORFs resides. In addition to a circular chromosome,

it contains nine apparently single-copy plasmids, varying in

size from approximately 2.1 to 374 kbp, which together

comprise roughly 22% of the genome (Swingley et al.

2008). For the CCMEE 5410 assembly, we provisionally as-

signed contigs greater than 5 kbp in length to either the

chromosome or a plasmid element using a nucmer align-

ment against the MBIC 11017 genome (supplementary ta-
ble S1, Supplementary Material online). This length cutoff

was chosen because most short contigs either exhibited

no homology to the MBIC11017 genome and/or encoded

an IS element(s). One hundred and eighty-eight contigs to-

taling 5.81 Mbp were assigned to the chromosome, and 61

contigs with a cumulative size of 1.52Mbpwere assigned to

plasmids (supplementary table S1, Supplementary Material

online).
Gene content is generally conserved on the two Acaryo-

chloris chromosomes. Approximately, 89% of ORFs on the

MBIC11017 chromosome (5,621/6,342) have homologs in

the CCMEE 5410 genome, whereas 83.5% of ORFs (4,951/

5,932) on contigs assigned to the CCMEE 5410 chromosome

have homologs in theMBIC11017 genome.Mapping of these

chromosome contigs to the MBIC11017 reference indicated

a high degree of sequence conservation and local synteny be-
tween chromosomes (fig. 1A; reference range data in supple-

mentary table S1, Supplementary Material online).

By contrast, differences in gene content between the ge-

nomes are concentrated on plasmids. Seventy-seven per-

cent (1,685/2,186) of MBIC11017 plasmid ORFs have no

homolog in the CCMEE 5410 genome, accounting for

70% of the ORFs absent from the latter. The individual plas-

mids vary in the fraction of ORFs with homologs in the
CCMEE 5410 genome from 0% (pREB9) to;48% (pREB4).

Similarly, for CCMEE 5410 contigs assigned to a plasmid,

55% of the 1,649 ORFs lacked a homolog in the

MBIC11017 genome. In addition, few large blocks of syn-

teny were observed among the MBIC11017 plasmid ORFs

Table 1

General Features of the CCMEE 5410 and MBIC11017 Genomes

CCMEE 5410 MBIC11017a

Genome size (Mbp) 7.88 8.36

GC content (%) 47 47

ORFs 8383 8528

Strain-specific ORFs 2261 2406

IS elements 552 487

a
Data from Swingley et al. (2008).
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that were shared between the genomes (supplementary ta-

ble S1, Supplementary Material online). The most extensive

syntenic regionswere clustered on plasmid pREB4 in a region
spanning MBIC 11017 ORFs D0134–D0214 (fig. 1B). Blocks
of synteny from this plasmid include genes responsible for

the biosynthesis and maturation of a bidirectional hydrog-

enase (ORFs D0176–D0197; nucleotides 140334–159433)

and a complete set of loci encoding an alternative ATP syn-

thase (ORFs D0157–D0167; nucleotides 123957–132033).

These results suggest a greater instability of the Acaryochlo-
ris plasmids compared with the chromosome.

Age Distribution of Duplicated Genes in Acaryo-
chloris Genomes

Both genomes are notable for their large number of recent

paralogs. We identified 393 and 597 duplicate pairs with

synonymous-site divergence (dS) less than dS 5 5 in the ge-

nomes of Acaryochloris strains CCMEE 5410 and
MBIC11017, respectively. A majority of duplicated regions

involve only a single protein-coding ORF; only ;29% of

pairs (N 5 174) in the strain MBIC11017 genome and

;35%of pairs (N5 136) in the strain CCMEE 5410 genome
were a part of duplicated blocks of greater than one ORF.

Most duplicates belong to the least divergent classes (dS, 1;

fig. 2A). The difference between strains in the observed num-

ber of duplicate pairs is primarily due to a greater number of

duplicates in these classes in the genome of strainMBIC11017,

which contains approximately double the number of duplicate

pairs with dS , 0.5 (278 vs. 143). By contrast, the number of

duplicate pairs with dS . 2 is similar between the genomes
(121 vs. 102). For both Acaryochloris genomes, the number

of duplicate pairs with dS , ;1.5 is very large compared with

other representative bacterial genomes (fig. 2B; Hooper and
Berg 2003b). For greater levels of dS, duplicate numbers are

comparable, with the exception of an apparent enhanced den-

sity of duplicates in Acaryochloris genomes centered on dS val-
ues of ;2–2.4 (fig. 2).

Most duplicate pairs from the least divergent classes are
strain specific, whereas more divergent duplicates are
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FIG. 1.—(A) Sequence and gene order conservation between Acaryochloris chromosomes illustrated for CCMEE 5410 contig 453, which maps to

positions 3.98–4.10 Mbp on the strain MBIC11017 chromosome. The y axis is the probability that a pair of aligned nucleotides is identical in state

between genomes along a sliding window of 100 nucleotide sites with a 25 site step-size. Nonhomologous regions include transposases at the contig

breakpoints, CCMEE 5410 ORFs missing in the MBIC11017 genome (ORFs 191 and 205) and an ORF (ORF 187) which maps to coordinates 6.368–

6.369 Mbp on the MBIC11017 chromosome. (B) Sequence conservation between Acaryochloris genomes for CCMEE 5410 contigs homologous to

MBIC11017 plasmid pREB4: contig 468 (blue), contig 500 (green), contig 510 (orange), contig 511 (gold), contig 576 (brown), contig 598 (plum).

Approximately, half of pREB4 is missing from the CCMEE 5410 genome. The fraction of each contig that maps to pREB4 ranges from 34.5% (contig

511) to 96% (contig 468).
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generally more likely to be present in both genomes (fig. 3).

This pattern is in accord with the expectation that silent site

divergence is generally a reasonable proxy for the age of

a duplication event and that less divergent duplicate pairs

have therefore largely originated following the divergence

of these strain lineages from their common ancestor. How-
ever, there are a number (N5 60) of low divergence (dS, 1)

duplicate pairs in the strain CCMEE 5410 genome that also

are found in the strain MBIC11017 genome. Such pairs may

be the result of convergent duplication events following

strain divergence or, alternatively, may appear ‘‘younger’’

than they are due to either gene conversion or extreme se-

quence conservation at synonymous sites. We believe that

slower than average evolutionary rates is of primary impor-
tance for these loci because clear evidence from phyloge-

netic analyses for either convergent evolution or gene

conversion (i.e., paralogs clustering by strain) was observed

for only a minority (N 5 14) of duplicate pairs (data not

shown). Among more divergent duplicates, approximately

50% (77/166) of duplicate pairs of divergence level dS .

1 in the strain CCMEE 5410 genome are present in the

MBIC11017 genome (fig. 2). The unique duplicates among
the more divergent age classes suggest that there has been

the differential retention of older duplicates between ge-

nomes following strain divergence.

Estimation of Duplicate Birth and Death Rates

Following the approach of Lynch and Conery (2000, 2003),

we modeled each age distribution as a steady-state birth–

death process in order to estimate the rates at which dupli-
cates arise and disappear from the respective Acaryochloris
genomes. Because the assumption of constant birth and

death rates is more likely to be valid over a short time scale,

we limited the analyses to duplicate pairs with silent site di-

vergence less than dS 5 0.1. For both data sets, we also ex-

cluded duplicate pairs in these age classes (N 5 7 pairs)

found in both genomes (see above) to remove the potential

impacts on the analysis of either gene conversion events or
slowly evolving duplicates. We note that similar results were

obtained for the full data set (not shown).

Under a steady-state birth–death process, the instanta-

neous rate of removal of duplicates from the genome (d)
can be estimated by the slope of the linear regression of

ln ni on dS, where ni is the number of duplicate pairs in

age class i. The regression models explained most of the var-

iation in both data sets (R2 5 0.82, P , 0.0001 for Acaryo-
chloris strain CCMEE 5410; R2 5 0.76, P , 0.0001 for

Acaryochloris strain MBIC11017), suggesting that the as-

sumption of constant birth and death rates over this time

interval is reasonable. Estimates of d (standard error [SE])

were not significantly different for the two strains: 8.0

(2.14) for CCMEE 5410 and 7.8 (2.52) for MBIC11017. This

corresponds to estimated half-lives (scaled to synonymous

site divergence) of 0.087 and 0.089 for Acaryochloris strains
CCMEE 5410 and MBIC11017, respectively. That is, most

duplicates are expected to be lost rapidly from the genome.

These values are within the range observed among eukary-

otic genomes (Lynch and Conery 2003).

We estimated the duplicate birth rate B (the probability

that a gene duplicates over the divergence period dS 5 0.1)

for each genome by B5 (nBd � dS)/N (1 – e�d � dS), where
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Dynamics of Gene Duplication in the Genomes of Chlorophyll d-Producing Cyanobacteria GBE

Genome Biol. Evol. 3:601–613. doi:10.1093/gbe/evr060 Advance Access publication June 21, 2011 605

 at T
he U

niversity of M
ontana on A

ugust 15, 2011
gbe.oxfordjournals.org

D
ow

nloaded from
 

http://gbe.oxfordjournals.org/


nB is the number of duplicate pairs observed at a divergence

level below dS 5 0.1, and N is the total number of genes in

the analysis excluding excess duplicates. The duplicate birth

rate of strain MBIC11017 was estimated to be between two

and three times greater than that of strain CCMEE 5410

(0.023 vs. 0.010). We conclude from the above analyses

that the observed differences in the frequency distributions

of recent duplicate pairs in the genomes of the two strains
can be solely explained by differences in their duplication

rates.

Selection on Duplicate Pairs

The idea that redundant gene copies experience a period of

relaxed selection (i.e., dN/dS � 1) following duplication is

central to early models of the evolution of novel function

(e.g., Ohno 1970). For both Acaryochloris genomes, a mi-

nority of duplicate pairs does appear to be under relaxed

selective constraints immediately following duplication

(fig. 4); for duplicates with a divergence level of dS ,

0.1, mean (SE) values of dN/dS are 0.45 (0.067) and 0.48
(0.084) for the strain MBIC11017 and strain CCMEE

5410 genomes, with approximately 25% of duplicate pairs

having dN/dS . 0.5 in both genomes. A small number of

these duplicates (four in the strain CCMEE 5410 genome,

nine in the strain MBIC11017 genome) have dN/dS . 1,

which suggests that they may be under positive selection.

With one exception, the duplication of a chorismate mutase

gene in strain MBIC11017, all of these duplicates are anno-
tated as hypothetical or conserved domain proteins. How-

ever, most young duplicates as well as those which have
been retained over longer periods appear to be under strong

purifying selection against protein change: the median of

dN/dS in the dS , 0.1 divergence level classes is ;0.2 and

;0.3 for the strain MBIC11017 and strain CCMEE 5410 ge-

nomes, respectively. For duplicates of divergence level

greater than dS 5 1, mean (SE) value of dN/dS is 0.12

(0.004) for the strain MBIC11017 genome and 0.09

(0.004) for the strain CCMEE 5410 genome. Bearing inmind
that the estimated strength of constraint represents the cu-

mulative history of selection since duplication, this pattern

indicates that, on average, the intensity of purifying selec-

tion on duplicates increases over time.We conclude that the

period of near-neutral evolutionary dynamics is at most brief

following gene duplication, applies to only a subset of du-

plicate pairs, and usually is followed by either purging from

the genome or an increase in selection against protein
change. These results are similar to those obtained for other

bacteria (Hooper and Berg 2003b) as well as for eukaryotic

genomes (Lynch and Conery 2000, 2003; Aury et al. 2006).

Physical Location of Duplicated Genes

The location of duplicates at (or near) the time of birth may

provide clues regarding the substrates and prevailing mech-

anisms responsible for duplicate formation. Few duplicates
(;3% of duplicate pairs) are in tandem (operationally de-

fined here as beingwithin five ORFs of each other) at present

in either Acaryochloris genome.

The closed genome of Acaryochloris strain MBIC 110107

enabled a comprehensive investigation of the distribution of

duplicates on the chromosome and on extrachromosomal

elements, respectively. For the least divergent classes, at

least one gene copy resides on a plasmid for most duplicate
pairs (fig. 5A and B), with both on plasmids for greater than

60% of duplicates with a synonymous divergence level of dS
, ;0.5. Because duplicates might move over time, the lo-

cations of the least divergent duplicates are expected to be

most representative of where they originated. Of the 133

duplicate pairs of divergence level dS , 0.1, both members

are found on the same genetic element (chromosome or

plasmid) only ;16.5% of the time. Similarly, 13 of 21 iden-
tical (i.e., dS 5 dN 5 0) duplicate pairs are located on differ-

ent elements, and of the eight which are on the same

element, six likely originated as part of the same duplication

event on plasmid pREB3. The origin of most duplicates

therefore appears to involve recombination between differ-

ent plasmids (67/133) or between a plasmid and the chro-

mosome (44/133).

Chromosome–chromosome pairs make a substantial
contribution to the pool of duplicates from more divergent

classes, however, with 40% of duplicates both residing on

the chromosome at divergence levels greater than dS 5 2

(fig. 5C). Plasmid–plasmid duplicates are nearly absent in
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these classes (fig. 4A). Although most gene duplication

events involve interplasmid or plasmid–chromosome ex-

change, it therefore appears that the vast majority are des-

tined for loss from the genome. Duplicates that are retained

over the long term tend to either originate on the chromo-

some or end up there.

We reach a similar conclusion for the CCMEE 5410 ge-

nome (supplementary fig. S1, Supplementary Material on-
line), although we could not assign one or more copies

of a duplicate pair to a genetic element for 25% of dupli-

cates. Most of these unassigned pairs belonged to low

divergence classes (dS , 1.0), with one-third from a diver-

gence class of ds , 0.1. Inability to resolve the locations of

these duplicates was due to the presence of one or both

copies on a short contig and is likely responsible for the

observed lower than expected density of interplasmid and

plasmid–chromosome pairs in these low divergence classes

(supplementary fig. S1A and B, Supplementary Material

online; compare with fig. 2A). The placement on short
contigs suggests that they are flanked by repetitive DNA

(including IS elements) that may have served as substrates

for recombination.

Duplicate Retention

Bacterial genomes may exhibit a biased retention of dupli-

cates from different gene functional classes (Gevers et al.

2004). Analysis of the strain CCMEE 5410 genome indicated

differences in the likelihood of retention among clusters of

orthologous groups (COGs) functional classes (fig. 6). In par-

ticular, the pool of duplicated genes (dS , 5) is enriched in

members from the transcription (K), carbohydrate transport

and metabolism (G), ion transport and metabolism (P), sig-
nal transduction (T), and unknown (S) functional classes

compared with their genome-wide frequencies. Conversely,

there is a general paucity of duplicated genes involved in

translation (J), replication, recombination and repair (L), cell

wall/membrane/envelope biogenesis (M), amino acid trans-

port and metabolism (E), and coenzyme transport and me-

tabolism (H). This suggests that gene dosage balance may

generally be more critical within these classes, with duplica-
tion of individual genes strongly selected against.

The observed biased retention of recent gene duplica-

tions in the G, K, and P classes, as well as a deficiency of

H, J, and M classes, is in accord with general longer term

evolutionary trends revealed for paralogous gene family ex-

pansion in a survey of 48 bacterial genomes (Gevers et al.

2004). The retention of signal transduction (T) and transcrip-

tion factors (K) is also a feature of plant genomes following
polyploidization (Blanc and Wolfe 2004; Maere et al. 2005;

Chapman et al. 2006; Thomas et al. 2006).
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Unique duplicates retained by the respective genomes

may confer environment-specific fitness benefits through

dosage effects, a phenomenon frequently observed in lab-

oratory populations of bacteria (Roth et al. 1996; Romero

and Palacios 1997; Reams and Neidle 2003). A correlation

between duplicate content and environment has also been

observed for yeast (Ames et al. 2010). The genome of strain

MBIC11017 possesses a striking number of duplicated
genes involved in nutrient acquisition (principally the bind-

ing, transport, and metabolism of iron) that exist as either

single copies or are not found in the strain CCMEE 5410 ge-

nome (table 2). All but one of these include a plasmid-en-

coded duplicate copy. We note that the strain MBIC11017

genome also includes eight plasmid-encoded single-copy

iron acquisition genes that are absent from the strain

CCMEE 5410 genome (ORFs A0156, A0157, A0172,
A0197, A0198, A0274, B0123, B0125).

That this strain’s genome may have been shaped by iron

limitation is also suggested by the recent duplication of the

light antenna protein pcbC (table 2). This gene is upregulated

by Acaryochloris cells under conditions of iron deficiency

(Chen et al. 2005), and PcbC protein subunits produce

a light-harvesting antenna for photosystem I that may com-

pensate for the reduction in the level of this photosystem rel-
ative to photosystem II that occurs during iron stress.

Tropical Pacific waters generally appear to be low in iron

(e.g., Coale et al. 1996; Behrenfeld et al. 2006). Although

we do not know the iron concentration of the local environ-

ment from which strain MBIC11017 was isolated, there are

reasons to believe that Acaryochloris cells may be iron lim-

ited in their natural habitat. This strain was isolated from un-

derneath the ascidian, Lissoclinum patella (Miyashita et al.

1996), which belongs to a suborder (Aplousobranchia),

which includes members notable for the accumulation of

high concentrations of iron from the environment in blood

cells called ferrocytes (Endean 1955). In addition, the posi-

tive response of MBIC11017 laboratory cultures to heavy
iron addition suggests an organism with high demand for

this nutrient (Swingley et al. 2005).

Other recent duplicates in the MBIC11017 genome that

are involved in light-harvesting encode pigment and scaffold

components of phycobiliproteins (table 2), the major acces-

sory pigments in photosynthesis for most cyanobacteria.

Multiple duplicate copies of genes for the phycobiliprotein

phycocyanin, which specifically harvests yellow–orange
light for photosynthesis, as well as linker proteins essential

for the assembly of phycobiliprotein rods, are located on

plasmid pREB3 (Swingley et al. 2008). Strain MBIC11017

produces phycobiliproteins under low light conditions in

the laboratory (Chan et al. 2007). By contrast, strain CCMEE

5410 does not produce phycobiliproteins (Chan et al. 2007),

and these genes are missing entirely from its genome (table

2). This pattern suggests differences in the availability of yel-
low–orange light in the two environments. These wave-

lengths appear to be available at low levels in the natural

environment of strain MBIC11017 (Kühl et al. 2005),

whereas they may be more rapidly attenuated in the turbid

Salton Sea environment fromwhich strain CCMEE 5410was

Table 2

Select Strain-Specific Duplicates in the Strain MBIC11017 Genome

ORFsa Annotation dS CCMEE 5410

Nutrient acquisition

0473/A0147 Fe2þ-transporter feoB 0.26 7582

0474/A0146 Fe2þ-transporter feoA 0.11 7581

3038/(B0139/F0079) Fur transcriptional regulator 0.55/0.30 2939

3040/F0079 Putative Fe2þ-transporter 0.21 2937

3348/A0161 Fe3þ-dicitrate ABC transporter 1.36 0699

3349/A0162 Fe3þ-dicitrate ABC transporter 1.23 0700

3350/A0163 Fe3þ-dicitrate ABC transporter 1.23 0701

3401/A0182 Fe3þ-dicitrate ABC transporter 0.22 0727

3402/A0183 Fe3þ-dicitrate ABC transporter 0.28 0728

3403/A0184 TonB-dependent siderophore transporter 0.15 0729

3416/A0185 Ferrichrome ABC transporter 0.31 0738

C0108/C0205 Heme oxygenase (Fe-recycling) 0 —

3533/3534 Ammonium transporter 0.003 8087

Light harvesting

1368/3655 Iron deficiency light antenna pcbC 0 8040

C0093/C0216 Phycobilisome linker protein 0.02 —

C0094/C0215 Phycobilisome 32.1 kDa linker 0 —

C0096/C0213 Phycocyanin, alpha subunit 0 —

C0098/C0212 Phycocyanin, beta subunit 0 —

C0099/C0191 Phycocyanin, alpha subunit 0 —

C0100/C0192 Phycocyanin, beta subunit 0.01 —

a
ORFs on plasmids are preceded by a letter indicating plasmid identity.
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isolated (Miller et al. 2005) by phycobiliprotein-producing

plankton (Wood et al. 2002) and inorganic particulate mat-

ter (Swan et al. 2007) in the overlaying water column.

The Salton Sea is a phosphorus-limited system character-

ized by high concentrations of dissolved organic carbon and
nitrogen (Schroeder et al. 2002), as well as of iron, primarily

as reduced particulates (Holdren and Montaño 2002; de

Koff et al. 2008). Heavy metal (including cadmium, copper,

selenium, and zinc) concentrations are also high (Vogl and

Henry 2002; LeBlanc and Schroeder 2008). The unique du-

plicate pool of the strain CCMEE 5410 genome (table 3) is

enriched in loci involved in organic carbon metabolism and

heavy metal resistance (in particular, copper). Many dupli-
cate copies were found on two inferred plasmid contigs en-

coding ORFs 2340–2395 andORFs 2456–2512, respectively.

Similarly, a number of single-copy genes in the strain CCMEE

5410 genome in large (.50 kbp), plasmid-assigned regions

of no apparent homology with strain MBIC11017 are also

involved in heavy metal (primarily copper) resistance (ORFs

2382 [copper-translocating ATPase], 2458 [CopA family

copper-resistance protein], 7833 [copper-resistance protein
precursor CopB], 0016 [CzcA family heavy metal efflux

pump]).

A Role for recA Dosage in Gene Duplication?

A mechanistic understanding of the gene duplication dy-

namics of Acaryochloris genomes must ultimately account

for both their high load of recent duplicates compared with

other bacteria and the observed differences in the duplicate

age distributions of the two strains. The recombination pro-

cess is a likely candidate for involvement in duplication be-
cause homologous recombination functions are generally

important for both duplicate formation (Hill et al. 1977;

Dimpfl and Echols 1989; Petit et al. 1991) and loss (Anderson

and Roth 1979), particularly for long recombining sequen-

ces such as IS elements (but see Reams et al. [2010], e.g., in

which duplication depends only weakly on homologous

recombination). The large number of IS elements in Acar-
yochloris genomes (table 1) provide potential substrates for
recombination. Although there appears to be a general

trend against the retention of duplicates involved in

DNA replication, recombination, and repair (fig. 6), both

genomes contain a number of duplicated genes from this

functional class, and we briefly consider here whether

these duplicates may play a role in the enhanced duplica-

tion dynamics of these genomes.

Most notably, there are an unusually large number of re-
cA copies in both Acaryochloris genomes. RecA is a multi-

functional protein that is central to homologous

recombination, is involved in recombination-mediated

DNA damage repair and rescue of stalled replication forks,

is required for mutagenesis mediated by translesion synthe-

sis, and regulates gene expression through its coprotease

activity (reviewed by Miller and Kokjohn 1990). The strain

MBIC11017 genome contains seven recA copies (Swingley
et al. 2008), whereas there are four complete copies in the

genome of strain CCMEE 5410. The CCMEE 5410 genome

also includes a truncated copy (ORF 6290) with a nonsense

mutation at codon 241 produced by an apparent transpo-

sition event that results in the loss of part of the ATPase core

and the C-terminal domain; the putative 3# end of the gene

copy is found on a different contig (ORF 8203) and is also

adjacent to a transposase. In contrast, recA exists as a single
copy in the vast majority of bacterial genomes; the only

known exceptions are the Acaryochloris genomes and those

of Myxococcus xanthus (two copies; Norioka et al. 1995),

Bacillus megaterium (two copies; Nahrstedt et al. 2005),

and Deinococcus deserti (three copies; de Grootet al. 2009).

Table 3

Select Strain-Specific Duplicates in the Strain CCMEE 5410 Genome

ORFsa Annotation dS MBIC11017

Carbon metabolism

0720/(2355/2491) Fructose-bisphosphate aldolase 2.59/1.48 3372

2488/(1772/2358) Xul5P/Fru6P phosphoketolase 2.69/2.27 0443

1774/2356 Acetate kinase 2.57 0445

2357/2490 Phosphoglycerate mutase family 1.58 —

4274/5615 Phosphoglycerate mutase family 1.03 —

2365/2496 Putative glycogen phosphorylase 0.84 —

Copper resistance

2343/2458 Cu resistance protein CopA 0.31 —

2364/2487 Copper-translocating ATPase 1.10 —

2372/2481 Copper-translocating ATPase 1.21 —

Defense mechanisms

3189/7004 RND family multidrug efflux 2.22 2480

1784/6258 RND family multidrug efflux 0.48 0454

Redox homeostasis

2586/(2383/2469) Glutaredoxin 1.69/0.84 3463

a
ORFs assigned to plasmids are italicized.
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Escherichia coli exhibits a 10-fold or greater tandem du-

plication rate if RecA is constitutively activated (Dimpfl and

Echols 1989), and overexpression of its eukaryotic homolog
RAD51 may also enhance duplication rate as well as gener-

ally increase genome instability (reviewed by Klein 2008).

Whether the greater recA copy number in Acaryochloris ge-
nomes results in enhanced expression remains to be deter-

mined, but the association between copy number and strain

duplication rate is consistent with a dosage effect. Also con-

sistent with this possibility, the D. deserti genome likewise

appears to contain a greater number of paralogs (;100–
200) than those of its single-copy congeners, D. radiodurans
and D. geothermalis (de Groot et al. 2009).

Acaryochloris recAs are both extremely diverse and mono-

phyletic, indicating that this diversity likely originated solely

during Acaryochloris diversification rather than by horizontal

gene transfer (HGT) (fig. 7). Three chromosomal copies are

shared by the strains and appear to predate divergence from

their common ancestor, whereas the strains vary in the num-
ber of plasmid-borne copies. Although on average all copies

have experienced strong purifying selection (dN/dS 5 0.05),

there is some evidence that certain amino acid substitutions

have been selectively favored during recA diversification.

Along two branches (labeled A and B in fig. 7), branch-site

models of codon evolution (Yang and Nielsen 2002) which

allow for positive selection on one or a few codon sites on

specific branches of a phylogeny had significantly greater like-

lihood values than nearly-neutral models constrained to dN/dS
� 1 for all codons (2DL 5 70.42, P 5 0 for the Branch A

model; 2DL 5 9.16, P 5 0.01 for the Branch B model).

The codons estimated to have experienced positive selection

(i.e., dN/dS. 1with a posterior probability P. 0.95 by Bayes-

ian analysis) at some point during recA diversification (supple-

mentary fig. S2; Supplementary Material online) include sites

that participate in monomer–monomer interactions in the

RecA filament (codons 105, 114, 115, 127, 153, and
240), make contact with ssDNA-binding sites (codon 153),

or change the properties (e.g., charge) of the C-terminal do-

main of the protein (codons 312, 323, and 328), which is

known to autoregulate RecA activity and to bind dsDNA dur-

ing homologous recombination (Cox 2007). Whether these

changes have consequences for RecA structure and function

remains to be investigated, as does the possibility that diver-

sification has yielded paralogous RecAs with nonredundant
functions (i.e., subfunctionalization) in Acaryochloris cells.

Concluding Remarks

Strain-specific duplicates concentrated on plasmids make

a substantial contribution to gene content differences

0.1 substitutions/site
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FIG. 7.—Unrooted Bayesian phylogeny of Acaryochloris recA duplicates. Values at a node represent the Bayesian clade credibility followed by the

bootstrap value for a ML analysis. MBIC111017 copies are green and CCMEE 5410 copies are blue.
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between Acaryochloris genomes and appear to be selec-
tively retained in their respective contemporary environ-

ments by favorable dosage effects. These differences are

in part the product of the differential retention of dupli-

cates of chromosomal origin (fig. 4B; see below). The lower

degree of conservation of gene content on plasmids com-

pared with the chromosome also suggests an important

role for HGT in Acaryochloris evolution. If this is the case,

the implication is that the ultimate source of many dupli-
cate pairs is a single-copy gene of foreign origin. In Proteo-

bacteria and Firmicutes, horizontally transferred genes do

appear to be more likely to be duplicated (Hooper and Berg

2003a).

To obtain a conservative estimate of the contribution of

HGT to the pool of strain-specific duplicates with at least

one copy on a plasmid, we performed BlastP analyses

against the NCBI Blast nonredundant protein sequence da-
tabase for each genome. For a given strain-specific duplicate

family without an ortholog in the other strain, it can be dif-

ficult to unequivocally determinewhether it is the product of

the differential retention of an ancestral gene or of HGT. This

is because many of these loci either exhibit greatest se-

quence similarity to a different cyanobacterium or have

no similarity to another sequence in the database (i.e.,

are orphan genes). Therefore, taking a conservative ap-
proach and using an E cutoff value of 10�20, we considered

a duplicate family to be of vertical origin if the top non-Acar-
yochloris hit for a duplicate family was a cyanobacterium, to

have originated by HGT if the top hit was another taxon and

to be of unknown origin if it was an orphan.

For duplicate pairs for which one copy is on the chromo-

some (fig. 4B), most are inferred to be of cyanobacterial or-

igin in both Acaryochloris genomes by the above criteria
(62% for strain MBIC11017 and 77% for the subset of du-

plicates in strain CCMEE 5410 which could be fully assigned

to genetic elements). This is the expectation if the plasmid

copy was derived by duplication of a chromosomal tem-

plate. Fewer duplicates in this category appear to involve

horizontally transferred loci (4% and 3%, respectively).

For interplasmid duplicates, however, a larger fraction

shows highest similarity to a taxon other than a cyanobacte-
rium and likely owes its origins to HGT (8% and 14%, re-

spectively). For example, CCMEE 5410-specific duplicate

pairs ORF2364/ORF2487 and ORF2365/ORF2496 (table 3)

exhibit greatest sequence identities to Thermus thermophi-
lus (67%) and a planctomycete bacterium (60%), respec-

tively, and the former has no known homolog among

other cyanobacteria. We believe that these HGT estimates

are probably very low, as approximately half of the dupli-
cates in the interplasmid category were orphans (57%

and 50%, respectively) which may be the products of

HGT. We conclude that the atypical, largely plasmid-medi-

ated duplication dynamics of Acaryochloris genomes gener-

ate copy number variation among loci of both ancestral and

foreign origin, that this variation is frequently nonadaptive,
but that it also is an important source of locally adaptive ge-

nomic variation with the potential to rapidly respond to en-

vironmental change.

In addition to modifying gene dosage, duplication also

creates opportunities for the evolution of novel gene func-

tions. Whether neofunctionalization contributed to the in-

novation of the unique chlorophyll metabolism of

Acaryochloris remains unresolved, as the details of Chl d bio-
synthesis and degradation are yet to be fully elucidated. Chl

d differs from Chl a by the replacement of a vinyl group with

a formyl group at C-3 of the porphyrin ring. The pigment is

produced from Chl a and molecular oxygen precursors

(Schliep et al. 2010), and biochemical evidence suggests

that the ‘‘Chl d synthase’’ that performs this reaction is

a P450 oxygenase (Chen 2010). The genomes of both

strains each harbor ten genes encoding P450 enzymes;
however, none of the copies appear to be recent duplicates

(not shown). We analyzed the pool of duplicates retained by

both genomes for paralogs with homology to other proteins

that could potentially participate in other aspects of Chl

d metabolism such as porphyrin ring degradation. The only

candidates to emerge were a pair of divergent (dS � 1.9)

duplicates with homology to a family of Rieske-FeS motif-

containing oxygenases involved in chlorophyll synthesis
and degradation (ORFs 0307/5640 in CCMEE 5410 and

0159/A0067 in MBIC11017). It is notable that A0067 is

found within one of the few regions of extensive synteny

between a MBIC11017 plasmid and the CCMEE 5410 ge-

nome (including A0036–A0053 and A0066–A0075).

Whether one of these paralogs has diverged to specifically

degrade Chl d awaits further investigation.

Supplementary Material

Supplementary table S1 is available at Genome Biology and
Evolution online (http://www.gbe.oxfordjournals.org/).
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