Particulate Matter 2.5 (PM 2.5) Study: PM 2.5 Level When Exposed To Exhaust

From Different Engine Sizes (cc)

Tyler Andersen and Casey Rusdal

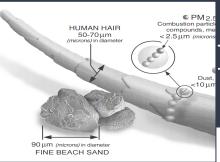
Libby Middle High School

Advanced Biology

Ms. Rose

Background

Relevancy:


- Northwest Montana
 - Vast amount of time spent outdoors
 - Vehicle exhaust negative effects
 - Long term impact on our cardiovascular health
 - Inversion layer

Question: How does engine size impact Particulate Matter 2.5 (PM 2.5) output?

Hypothesis: The larger engine sizes will release more PM 2.5 due to the higher rate of fuel consumption.

Null Hypothesis: There will be no statistical correlation between engine size and PM 2.5 output.

Intro to PM 2.5

Federal Exhaust Standards

- PM 2.5
 - Consists of particles of solids or liquids that are in the air
 - Airborne pollutants are a mixture of many chemicals
 - solid or liquid (CARB, 2023)
 - On-road vehicles are a significant source of harmful PM 2.5 air pollutant emissions
 - Vehicles burning fossil fuels emit PM 2.5
 - PM 2.5 can cause cardiovascular problems (Reichmuth, 2019)

- Federal Exhaust Standards
 - Developed by the United States Environmental Protection Agency (US EPA) to lessen the consequences of PM 2.5 pollution
 - Tier 4 emission standards 2010 (the most recent of any exhaust standards)
 - More strict than Tier 2 and Tier 3 emission standards
 - Tier 5 emission standards are not set to come out until 2027

Vehicles & Tools

125

80

420 cc

2007 Yamaha TT-R125

2010 Honda Rancher

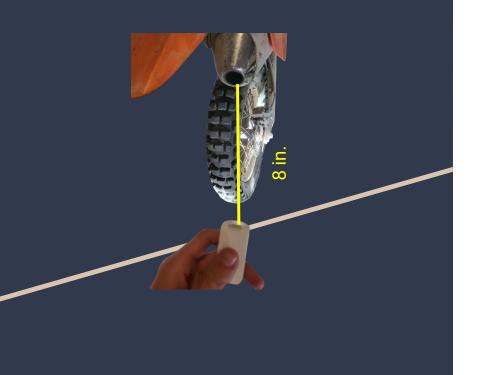
2000 Chevy Impala

250 CC

2003 KTM 250 EXC-F

2007 Yamaha Vector

1997 Jeep Grand Cherokee


Materials

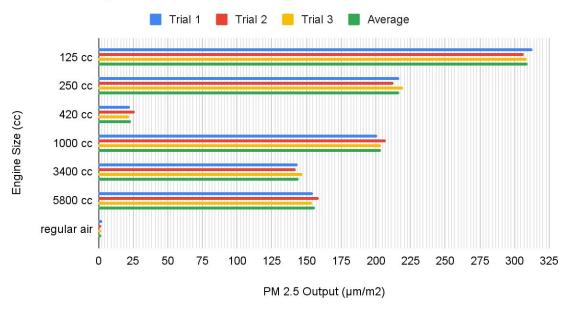
- Wynd Air Quality Tracker
- 2007 Yamaha TT-R125
- 2003 KTM 250 EXC-F
- 2010 Honda Rancher
- 2007 Yamaha Vector
- 2000 Chevy Impala
- 1997 Jeep Grand Cherokee

Wynd Air Quality Tracker

Experiment Methodology

<u>Methods</u>

- Wynd Air Quality Tracker was placed eight inches from the exhaust pipe
- 2. Reading began 2 seconds after engine start-up
- 3. Each reading lasted 10 seconds
- 4. PM 2.5 output was recorded
- 5. Each engine size was tested three times
- All vehicles were tested in the same location and at around the same time of day


Results

<u>Engine</u> Size (CC)	<u>Year Of</u> <u>Vehicle</u>	<u>Trial 1</u>	<u>Trial</u> 2	<u>Trial</u> <u>3</u>	<u>Average</u> (significant figures)	<u>Carbureted or</u> <u>fuel injected</u>	<u>Catalytic</u> <u>Converter</u> <u>(Yes/No)</u>
<u>125 cc</u>	2007	313	307	309	310	Carbureted	Ν
<u>250cc</u>	2003	217	213	220	217	Carbureted	Ν
<u>420 cc</u>	2010	23	26	22	24	Fuel Injected	Y
<u>1000 cc</u>	2007	201	207	204	204	Fuel Injected	Y
<u>3400 cc</u>	2000	144	142	147	144	Fuel Injected	Y
<u>5800 cc</u>	1997	155	159	154	156	Fuel Injected	Y
Regular Air	N/A	3	2	2	2	N/A	N/A

Trials in microns per square meter

Results and Data Analysis

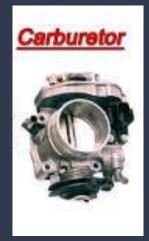
PM 2.5 Output From Different Engine Sizes

Difference between carburetor and fuel injected engines:

- <u>Carbureted:</u> All manual, has to be tuned to very precise conditions
- <u>Fuel injected:</u> Runs off a computer, can account for changes in the fuel air intake and environmental factors, making it more efficient

Catalytic converters were introduced in order to keep harmful pollutant out of the air

Discussion


- Based on our data, our hypothesis was rejected
 - As motor size increased, for the most part, there was a decrease in PM 2.5 output
 - It can be assumed that larger engine sizes are more environmentally friendly
- *Exception of the 420 cc engine seemed to indicate otherwise*
 - \circ Average output: 23.67 μ m/m²
 - Next lowest: 144.33 µm/m² (3400 cc)
 - Indicates that the 420 cc engine is the most environmentally friendly engine size studied

- Why might the 420 cc engine have a much lower PM 2.5 output?
 - Relative modernity compared to other engines
 - Newer catalytic converter
 - Under stricter emissions policies (US EPA)

Conclusions and Error

There were several variables and possible errors that may have contributed to not completely accurate results:

Variables include:

- Fuel injected vs. Carbureted
- Whether or not a vehicle had a catalytic converter
- Human error in:
 - $\circ \quad \text{ Length of test } \\$
 - Start time of test
 - Distance from exhaust
 - Exhaust pipe circumference
 - Affects dispersal fan

Null hypothesis:

Accepted due to no statistical correlation between engine size and PM 2.5 output

Steps for next time:

- More uniform sample set
 - All either fuel injected or carbureted
 - All or no catalytic converters
- Larger sample size
 - More extensive pool of engine sizes

In order to conclusively determine whether engine size is a factor were accurate or not, more similar experiments will need to be conducted.

References

California Air Resources Board (2023). Inhalable Particulate Matter and Health (PM 2.5 and PM 10). Retrieved from the Web March 29, 2023. <u>https://ww2.arb.ca.gov/resources/inhalable-pa</u> <u>rticulate-matter-and-health#:~:text=What%20is</u> <u>%20Particulate%20Matter%3F,solid%20cores%</u> <u>20with%20liquid%20coatings</u>.

David Reichmuth (2019). Air Pollution From Cars, Trucks, and Buses in the US: Everyone is Exposed, But the Burdens Are Not Equally Shared. Retrieved from the Web March 29, 2023.

> https://blog.ucsusa.org/dave-reichmuth/air-pol lution-from-cars-trucks-and-buses-in-the-u-s-ev eryone-is-exposed-but-the-burdens-are-not-equ ally-shared/.