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ABSTRACT The Mahalanobis distance statistic (D2) has emerged as an effective tool to identify suitable habitat from presence data alone,

but there has been no mechanism to select among potential habitat covariates. We propose that the best combination of explanatory variables

for a D2 model can be identified by ranking potential models based on the proportion of the entire study area that is classified as potentially

suitable habitat given that a predetermined proportion of occupied locations are correctly classified. In effect, our approach seeks to minimize

errors of commission, or maximize specificity, while holding the omission error rate constant. We used this approach to identify potentially

suitable habitat for the Olympic marmot (Marmota olympus), a declining species endemic to Olympic National Park, Washington, USA. We

compared models built with all combinations of 11 habitat variables. A 7-variable model identified 21,143 ha within the park as potentially

suitable for marmots, correctly classifying 80% of occupied locations. Additional refinements to the 7-variable model (e.g., eliminating small

patches) further reduced the predicted area to 18,579 ha with little reduction in predictive power. Although we sought a model that would allow

field workers to find 80% of Olympic marmot locations, in fact, ,3% of 376 occupied locations and ,9% of abandoned locations were .100 m

from habitat predicted by the final model, suggesting that .90% of occupied marmot habitat could be found by observant workers surveying

predicted habitat. The model comparison procedure allowed us to identify the suite of covariates that maximized specificity of our model and,

thus, limited the amount of less favorable habitat included in the final prediction area. We expect that by maximizing specificity of models built

from presence-only data, our model comparison procedure will be useful to conservation practitioners planning reintroductions, searching for

rare species, or identifying habitat for protection.

KEY WORDS habitat model, Mahalanobis distance, Marmota olympus, Olympic marmot, Olympic National Park, presence-
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Predictive modeling of distribution of a species or of habitat
suitable for a species is a key component of many
conservation programs and ecological studies (e.g., Guisan
and Zimmermann 2000, Fortin et al. 2005, Guisan and
Thuiller 2005, MacKenzie et al. 2006). Although predictive
models are often, and perhaps best, built using techniques
such as logistic regression that rely on both presence and
absence data (e.g., Peeters and Gardeniers 1998, Manel et
al. 1999, Mladenoff et al. 1999), in many applications
absence data are unavailable, unreliable, or incomplete. At
the time of a survey, a species may have undergone declines
for reasons unrelated to habitat quality (van Manen et al.
2005, Thompson et al. 2006). For instance, wide-ranging
animals may be absent from an area (Clark et al. 1993,
Pearce and Boyce 2006), a species that exists in a
metapopulation may be temporarily extinct at a suitable site
(Hanski 1998, Ozgul et al. 2006), and even organisms that
are present at the time of a survey may not be detected
(McArdle 1990, MacKenzie et al. 2003). To accommodate
such situations, several methods have been developed to
predict distribution or rank potential habitat using only
presence data (e.g., Busby 1991, Clark et al. 1993, Hirzel et
al. 2002, Lele and Keim 2006). These methods extend the
toolkit of the habitat modeler.
The Mahalanobis distance (D2) statistic has been

successfully used to identify suitable habitat from presence

data in a variety of situations (Corsi et al. 1999, Boetsch et al.
2003, Browning et al. 2005, Thompson et al. 2006) and in a
recent comparison of several presence-only methods, this
modeling approach performed particularly well (Tsoar et al.
2007). In this method, every map cell is assigned a score
based on how similar it is to the multivariate mean of the
habitat characteristics of the occupied map cells. In addition
to requiring only presence data, D2-based models do not
require multivariate normality in the habitat data and they
specifically account for covariance among habitat variables
(Knick and Dyer 1997). Mahalanobis distance-based habitat
models most commonly have been developed as a practical
aid to conservation efforts (e.g., to identify potential
reintroduction sites [Thatcher et al. 2006, Thompson et
al. 2006], to guide surveys for rare plants [van Manen et al.
2005]).
A limitation of the D2 method is that there are no

significance tests or other established methods to determine
importance of the explanatory covariates (Johnson and
Gillingham 2005). Whereas other habitat modeling ap-
proaches (e.g., logistic regression) allow stepwise inclusion
and exclusion of covariates, or permit comparison of how
well several competing models fit the data at hand, we are
unaware of any metrics that evaluate effects of individual
covariates on the specificity of the D2 statistic. Including
even one extraneous or redundant covariate greatly increases
the number of parameters that must be estimated in the
covariance matrix and so reduces precision of each estimate,1E-mail: olympicmarmots@aol.com
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lessening reliability of the final model. Furthermore, the D2

statistic only identifies how dissimilar any given location is
to the average occupied location with respect to all the
habitat covariates. Thus, inclusion of covariates that do not
differ in distribution between occupied locations and the rest
of the study area will dilute distinctions between the 2 types
of locations by inflating the within-group variance relative
to the between-group variance. Thus, it is possible that
when there are many candidate habitat covariates, inclusion
of extraneous or redundant covariates may actually reduce
specificity of the model.
Several recent papers have argued that it is possible to

identify variables that are most constant and, therefore,
useful predictors of habitat by partitioning the variance in
the D2 into the principle components of the correlation
matrix (Dunn and Duncan 2000, Browning et al. 2005,
Rotenberry et al. 2006). The variables that contribute most
heavily to the eigenvectors with the smallest eigenvalues are
considered the important predictors of habitat. There are
some apparent weaknesses in this decomposition approach.
At a fundamental level, these eigenvectors are more poorly
estimated than the eigenvectors associated with the larger
eigenvalues. Browning et al. (2005) attempted to account for
this weakness by bootstrapping their data and eliminating
eigenvectors that appeared to be unstable. Second, small
variance components will arise when L2 variables are highly
correlated, regardless of their importance to the organism
(S. Cherry, Montana State University, unpublished data).
Even if these statistical factors were unimportant in a given
situation (i.e., a very large data set with little or no
correlation in the explanatory variables), the use of only the
smallest k principle components could result in the
prediction of considerably more habitat than would be
predicted by a full model (Rotenberry et al. 2006, figs. 1, 2).
Ignoring these limitations, the decomposition approach,
which Rotenberry et al. (2006) refer to as niche identifica-
tion, may contribute to theoretical understanding of a
species’ biology and may be a useful tool in predicting a
species’ general response to changing ecological conditions.
However, the primary objective of many modeling efforts is
to make the model as specific as possible by reducing the
amount of unsuitable habitat predicted to be suitable while
simultaneously classifying a large portion of the suitable
habitat as suitable.
If high model specificity is a desired outcome, we propose

that the best combination of explanatory variables for a D2

model can be identified by ranking potential models based
on the proportion of the entire study area that is classified as
potentially suitable habitat given that a predetermined
proportion of occupied locations are correctly classified.
Because performance of any given model may depend on the
particular sample of presence points, we recommend
averaging results from many bootstrap replicates from the
presence data.
We developed a habitat model for the Olympic marmot

(Marmota olympus) using this model-ranking approach.
Olympic marmots are large, ground-dwelling squirrels
found on the upper slopes of the Olympic Mountains in

northwest Washington State, USA (Fig. 1). Their range is
largely contained within the 3,700-km2 Olympic National
Park. Since 1999, the park’s Resource Management Plan has
called for determining present distribution of marmots
within the park and developing a long-term monitoring
program for the species. Olympic and other alpine-dwelling
marmots inhabit high-elevation meadows, often inter-
spersed with talus or rock outcrops, on moderately steep,
southeast- to southwest-facing slopes (Barash 1989, Armi-
tage 2000). Marmots dig extensive burrow systems and
consequently require well-developed soil. Marmots are likely
restricted to high elevations both by distribution of
meadows and by these species’ intolerance of high
temperatures (Türk and Arnold 1988, Melcher et al.
1990). These habitat requirements are generalities; Olympic
marmots occupy all aspects and a wide range of slopes, and
they and their burrows are often found at forest edges.
This semifossorial rodent shares much with many species

of conservation concern. Little was known about its
distribution when we began our study; like other marmots
(Ozgul et al. 2006), Olympic marmots are believed to persist
as a metapopulation with periodic local extinctions leaving
suitable habitat temporarily vacant, and Olympic marmots
were declining and recently had disappeared from many
apparently suitable habitat patches (Griffin et al. 2008).
Additionally, our survey data more readily lent itself to a
presence-only model than a presence–absence model. Our
objective was to compare the ability of each of 2n 2 1
possible Mahalanobis distance models, given n habitat
covariates measured at locations where marmots were
present, to identify accurately a predetermined proportion
of suitable habitat while minimizing the amount of the total
landscape predicted.

STUDY AREA

We initially restricted our study to Olympic National Park
plus a 1.5-km buffer due to limited Geographic Information
System (GIS) cover-type data. Practically, our study area
included almost the entire range of the Olympic marmot.
We imposed an elevation cut-off of 1,300 m (Fig. 1), which
was lower than the lowest known marmot colony. Finally,
we removed all map cells classified as 71–100% closed
canopy in the GIS cover-type layer, because marmots were
not found in closed canopy forest. Thus, our final study area
encompassed 78,302 ha of open or lightly wooded, high-
elevation terrain within or adjacent to the park.

METHODS

The Mahalanobis Distance Statistic
The Mahalanobis distance statistic (D2) represents the
standardized squared distance between the covariate values
for a given sample and the mean vector of these covariates
for the occupied locations used to build the model
(hereafter, training data). In the context of habitat
modeling, a D2 value is computed for each map cell in the
study area based on the value of the habitat covariates under
consideration in that cell, relative to the average values of
those covariates in the training data as follows:
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D2~(m̂m{x)0ŜS{1(m̂m{x),

where m̂ and Ŝ are, for the habitat covariates under
consideration, the vector of the mean values and the
variance–covariance matrix at presence locations, respective-
ly. The variable x is the vector of values for each habitat
variable for a given cell. Cells with smaller D2 values have
habitat values more similar to the average of the training
data and so should be more likely to be occupied. The D2

values are continuous with a minimum of zero. If the
training data meet the assumption of multivariate normality,
then the D2 values are chi-square distributed and can be
rescaled to probabilities. Even when this assumption is
violated, there is a monotonic relationship between the D2

values and dissimilarity from the mean, with equal scores
being equally distant from the mean in multivariate space.
Thus, D2 values rank habitat in terms of suitability rather
than providing a probability of occupancy for each map cell.
Follow-up surveys guided by model predictions can provide
estimates of probability of occupancy (Boetsch et al. 2003).
For defining suitable habitat, a threshold D2 value is

usually identified. Map cells with D2 values lower than that

threshold are considered suitable for the study organism and
the remaining cells are considered unsuitable (Thatcher et
al. 2006). The threshold may be set so that all occupied
points are classified as being within suitable habitat or such
that some lesser proportion of the occupied locations are
classified as suitable (Podruzny et al. 2002, Boetsch et al.
2003, van Manen et al. 2005, Thatcher et al. 2006,
Thompson et al. 2006). When the proportion of occupied
map cells with D2 values below the threshold is much
greater than the proportion of random map cells with D2

values below that same value, or when distribution of D2

scores of occupied test locations is similar to those of
training data, models are considered to perform well
(Boetsch et al. 2003, Browning et al. 2005, van Manen et
al. 2005).

Comparison of Mahalanobis Distance Models
Computing D2 values for several models for every 25-m 3
25-m cell in an entire landscape would be cumbersome, but
computing D2 values of a few locations is easily done using
Matlab (The Mathworks, Inc., Natick, MA) or similar
software. Therefore, we randomly selected 1,000 map cells

Figure 1. (a) Location of Olympic National Park, Washington, USA. (b) Polygons of habitat known to be occupied by Olympic marmots in 2002–2005
(dark gray shading) and 376 point locations used in development of habitat models for the species (black triangles); intensive study sites are circled. (c)
Polygons known to be abandoned (dark gray shading) and the 114 abandoned point locations (black triangles) used to test the habitat model. Areas within the
park .1,300 m elevation are shown with light gray shading in (b) and (c).
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from within the study area to represent the total landscape
in our comparisons. We used presence locations, or
bootstrapped samples from these presence locations, to
represent suitable habitat.
As a metric with which to rank the models, we determined

the proportion of random locations classified as suitable
habitat under each of the models given that 80% of occupied
locations were classified as suitable (we term this metric
Pr80). That is, for each model we identified the smallest D2

value such that 80% of training data (in this case, a bootstrap
sample of presence locations) fell in map cells with values
less than or equal to that value. We classified all map cells
with equivalent or smaller D2 values as suitable and cells
with larger D2 values as unsuitable. We could then rank
models based on Pr80, with lower values indicating superior
models. We were, in effect, seeking to minimize the error of
commission rate, or maximize specificity, while holding the
omission error rate constant at 20%. The 80% threshold for
defining suitable habitat was somewhat arbitrary and the
optimal point of comparison will vary depending on the
purpose of the model (e.g., van Manen et al. 2005, Thatcher
et al. 2006).
Because m̂, Ŝ, and ultimately Pr80 for a given model

depend on the particular sample of presence points, we
compared the mean of Pr80 from 2,500 bootstrap replicates
of size 376 from our presence data rather than relying on the
results of one sample. We calculated Pr80 for each replicate
under each of the 2n 2 1 models based on m̂ and Ŝ for that
bootstrap sample. We ranked all models based on the mean
values (P̄r80).
To determine how much the models varied in which of the

1,000 randomly selected map cells they predicted to be
suitable, we calculated the Sorenson’s similarity coefficient,
Ssc (Sorenson 1948), between the set of points selected by
the top model and those from each of the other models. The
statistic Ssc measures the degree of overlap in 2 groups, with
a value of one indicating total overlap (e.g., all points
classified identically by the 2 models) and a zero indicating
that there is no overlap in classification. We wrote Matlab
code to calculate the D2 scores and P̄r80 from bootstrapped
samples and to calculate the Ssc values (Appendix SA,
,www.wildlifejournals.org.).
For the highest ranked model based on P̄r80 from the

bootstraps, we built one model from all presence locations.
With this model, we computed D2 scores for the 1,000
random points and visually compared the cumulative
frequency curve of these scores to that from the scores of
occupied data. We also computed and plotted D2 scores for
114 abandoned locations (see Sampling Abandoned Habitat
below). Similarity between abandoned and occupied data
would provide additional support for the model, although
differences in occupied and abandoned locations could
indicate differences in the 2 types of sites, rather than a
poorly fitting or over-fit model. Finally, we randomly
selected 1,000 locations from the unoccupied survey
polygons and compared the cumulative frequency curves of
these to occupied locations. Although we only drew these
unoccupied locations from a subset of the study area, they do

provide an interesting comparison because they represent
open, high-elevation habitat that did not show any sign of
recent marmot use. If the Mahalanobis distance model
represented a substantial improvement over the preliminary
model upon which we based our surveys, a large proportion
of these unoccupied points should be classified as unsuitable.

Collection and Subsampling of Location Data
We collected location data across the marmots’ range during
the course of habitat surveys and other activities. From 2002
to 2005, we surveyed 811 polygons of possible marmot
habitat throughout Olympic National Park. We had
identified these polygons in a preliminary GIS model
(hereafter, the 2002 model) and polygon selection and
survey protocol are described in detail elsewhere (Griffin et
al. 2008). Briefly, we subdivided by aspect patches of
meadow or rock (a cover class that included bare ground)
.1,400 m elevation. We removed patches ,0.56 ha because
preliminary surveys suggested that smaller patches would
not support marmots. We surveyed on foot groups of 1–5 of
resulting polygons according to a stratified random sampling
design. We classified polygons as occupied, abandoned, or
without sign of marmots (no sign) based on presence of
marmots, active or inactive burrows, and other evidence.
The polygons provided an effective approach to sampling

the habitat but because marmots occupied only a small
portion of many occupied polygons, they were unsuitable as
a sampling unit in a presence–absence model. However, in
most occupied and abandoned polygons we did collect
representative locations of marmots or burrows (active or
abandoned), using a handheld Global Positioning System
(GPS) unit (usually accurate to M10 m). Hereafter,
occupied location indicates these recorded locations of
occupied burrows or marmots and abandoned location
indicates recorded locations of abandoned burrows. That is,
location refers to a point on the ground rather than a
marmot colony or a meadow and provided precise, reliable
data suitable for use in a presence-only model. In addition to
recording locations during polygon surveys, we recorded
opportunistically encountered marmots or burrows outside
polygons; we conducted trapping, resighting, and radiote-
lemetry studies in 3 areas of the park (hereafter, demo-
graphic sites; Griffin et al. 2007, 2008); we collected hair
samples for genetic analyses from marmots throughout the
park; and we investigated several written and oral reports of
marmots (Griffin 2007). During each of these activities, we
collected additional location data. We included in the
occupied data set locations from 3 colonies that were known
to have been abandoned during the study period.
We collected .10,000 occupied locations, each of which

was not necessarily unique; in the course of radiotracking,
trapping, and genetic sampling, burrows were recorded
multiple times and individuals were often represented by
multiple locations within their home ranges. To reduce the
influence of the more heavily sampled areas, we subsampled
from the data as follows: we randomly ordered locations and
then sequentially compared each on the list to all prior
points. We accepted locations .125 m from all previously
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accepted locations into the data set we used to build the
models; we discarded all other locations. We also removed 8
locations that fell within cells classified as 71–100% canopy
closure because these were likely the result of GPS,
recording, or map classification error, and these locations
fell outside the defined study area. Following subsampling,
the marmot presence data set was composed of 376 occupied
points (Fig. 1b).
We chose 125 m as the buffer distance around each

location because the 4.9 ha thus encompassed approximates
the median minimum convex polygon (MCP) home range
of Olympic marmots (Griffin 2007). However, due to
concerns that the demographic study sites might be
overrepresented despite subsampling, we explored the effect
of a larger buffer size (200 m) on distributions of the habitat
covariates used to build the model. As expected, subsam-
pling with a 200-m buffer reduced the final data set by 31%,
to 258 cases. The proportion of the included locations that
represented the demographic study sites decreased from 23%
to 16%. However, neither the mean nor variance of any of
the 11 habitat covariates (see Habitat Covariates) changed
in a statistically or biologically significant manner (t-tests,
F-tests, and x2 tests of association as appropriate, all P .

0.05). We expected that the distributions of the habitat
covariates would be similar at the 2 scales because most
(77%) locations in the 125-m buffer data set were not from
the demographic sites and 165 of 219 (75%) known
occupied polygons were represented by L1 locations. There
was no indication that the 165 represented polygons differed
from the 54 that were occupied but not represented with
respect to region, aspect, area class, or slope class (x2 tests,
all P . 0.05). Furthermore, the demographic sites
collectively represented all aspects and a range of elevations,
colony sizes, and vegetation types (Griffin et al. 2008).
Thus, the 125-m buffer appeared to have adequately
reduced the influence of the demographic study sites and
we used that data set in all further analyses.
We restricted the data set of abandoned locations to

burrows that showed no signs of recent use and that were
located in areas that contained many such burrows or where
there were historical records of marmots. We did not

include burrows that were ,200 m from occupied habitat
and any others that we felt might not represent truly
abandoned habitat, initially leaving 175 abandoned burrow
locations. We subsampled from these as for occupied
locations. The 114 points (Fig. 1c) ultimately composing
the abandoned data set represented 78 of the 111 (70%) of
known abandoned polygons.

Habitat Covariates
Habitat models included up to 11 explanatory variables that
described topography and vegetation within either the focal
25-m 3 25-m map cell or a 25-cell window centered on the
focal cell (Table 1), depending on the scale at which we
thought variables might be important. For example, by
considering the proportion of cells that were meadow or
rock within a 25-cell window rather than individual cells, we
intended to allow inclusion of small sparsely vegetated or
rocky areas if appropriate while penalizing those cells that
were surrounded by extensive rock or scree with no forage or
digging substrate available. Use of the larger moving
window also served to reduce the influence of classification
error in the GIS layer. Continuous variables such as
elevation and aspect should be adequately characterized by
the value of one map cell. We attempted to use Beers’
transformations (Beers et al. 1966) to linearize the aspect
covariate but the result was a bimodal distribution. A
bimodal distribution is not desirable for the Mahalanobis
distance calculations because locations at the modes are far
from the mean and thus penalized, although the modes
represent the most typical locations for marmots. Instead,
we used 2 binary variables, NE/SW and NW/SE, to
describe aspect.
Although we identified 5 types of meadow in the GIS

cover-type layer and marmots probably prefer some types
over others, we lumped all meadow types into one
classification meadow because the rarity of each meadow
type resulted in the mean proportion of the 25-cell window
occupied by each type being small (,0.10) at the 376
occupied locations. Thus, locations with a high proportion
of any given meadow type would have been penalized
because they were unusual (the best habitat is rare in this

Table 1. Names and descriptions of habitat covariates we used in developing habitat models for Olympic marmots. Value ranges for covariates are based on
marmot locations collected in 2002–2005 in Olympic National Park, Washington, USA.

Variable Description Classes or value range Window

Elevationa Elevation (m) 1,300–2,430 Focal map cell
Slopeb Slope steepness (u) 0–89 Focal map cell
Rockc No. of rock or sparse ground map cells within window 0–25 25 map cells
Meadowc No. of meadow map cells within window 0–25 25 map cells
May insolationd Modeled incoming daily solar radiation for 21 May (106 Kj/m2) 23.0–41.1 25 map cells
Aspect NE/SWb 0/1 Focal map cell
Aspect NW/SEb 0/1 Focal map cell
Treec Trees present within focal map cell 0/1 Focal map cell
SD of sloped Measure of topographic variability (SD) 0.7–21.0 25 map cells
Planiform curvatureb Slope curvature in horizontal plane (unitless) 224.6–30.8 25 map cells
Profile curvatureb Slope curvature in vertical plane (unitless) 220.6–18.4 25 map cells

a U.S. Geological Survey (2000).
b We used standard ArcGIS tools to derive these variables from the elevation layer.
c Pacific Meridian Resources (1996).
d Hetrick et al. (1993).
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case and so not represented by the average of the occupied
locations). The same problem would have resulted if we
used one cell instead of the 25-cell window.

Final Model Refinements and Evaluation
We used the best performing model to produce a final
habitat map for Olympic marmots. We used the m̂ and Ŝ21

from all 376 occupied locations to compute D2 values for
each map cell in the entire landscape. For this purpose, we
wrote an Arc Macro Language code for use in ARC/INFO
GIS. We identified the D2-value at which 80% of the 376
occupied locations were correctly classified and used this as
the upper limit for designating habitat as suitable for
Olympic marmots.
We then made several refinements to facilitate comparison

with the 2002 habitat model and to make the final model
more useful for Olympic Park monitoring and management
efforts. First, we eliminated several patches of permanent
snow and ice that were predicted, because these are clearly
inhospitable to marmots. Second, as in the 2002 model, we
removed patches of predicted habitat ,0.56 ha, assuming
them to be too small to support marmots (the min. recorded
MCP home range of an adult Olympic marmot is 0.60 ha [n
5 33]; Griffin 2007). Finally, we eliminated areas outside
the park boundaries because the 2002 model did not include
these areas and monitoring by park personnel would be
confined to the park.
We then determined the distance that each occupied and

each abandoned location fell from predicted habitat in this
refined model, to confirm that removed patches were not
important marmot habitat, which also allowed us to
determine whether points falling outside the predicted area
were at least close to these areas. We also examined the
amount of rock predicted by our new model, because one
objective of the modeling process was to eliminate some of
the 20,454 ha of often inhospitable rock identified as habitat
by the 2002 model.

RESULTS

Model Comparison
We compared P̄r80, the mean proportion of random
locations predicted to be suitable habitat, from 2,500
bootstrap replicates for 2,047 models representing all
possible combinations of 11 habitat covariates. The best
performing model included 7 covariates and predicted
29.2% of random locations to be suitable. Of the 2,500
bootstrap replicates, this 7-variable model was top ranked in
624 (25%). For all other variable combinations, P̄r80 was
.30% (Fig. 2) and the full model ranked 8 with a P̄r80 of
30.8%. Bootstrap replicates demonstrated considerable
variability in the proportion of random locations classified
as suitable due to sampling. The fifth and 95th percentiles of
this distribution for the top ranked model were 25.3% and
33.6%, respectively. This range of variability was less than
that of 92.9% of the 2,047 models.
Several covariates appeared at high frequency in the top

100 models (Table 2). Elevation proved to be the most
critical, appearing in all of the top 459 models. Rock,

meadow, and May insolation each appeared in .90 of the
top 100 models. These variables were followed in apparent
importance by aspect NE/SW, aspect NW/SE, and profile
curvature. Slope, planiform curvature, trees, and standard
deviation of slope all appeared in ,55 of the top ranked 100
models. The top ranked model included only the 7 most
frequently occurring covariates.
A model’s Ssc relative to the best model generally

decreased with model rank (Fig. 3), but there was
considerable variation in scores even among models that
predicted almost the same proportion of random points to
be suitable. This variation in Ssc scores indicates that
although the highest ranked models all predicted about 30%
of random points to be suitable habitat, not all of these
highly ranked models predicted the same map cells as those
predicted by the top-ranked model. In particular, it
appeared that inclusion of trees as a predictor variable led
to greater dissimilarity in configuration of selected habitat
(Fig. 3).
The cumulative frequency curve for occupied locations

showed a high degree of overlap with abandoned locations
(Fig. 4). The cumulative frequency curve for points selected
from unoccupied polygons lay considerably below that of
occupied and abandoned locations and only 37% of these
had D2 values less than the threshold value of 8.54.

Final Model Refinements and Evaluation
The unrefined final model, using 7 habitat covariates and all
376 occupied locations, identified 22,624 ha (28.9% of the
entire study area) as containing 80% of suitable habitat (D2

, 8.54). Within the park itself, 21,143 ha had D2 values

M8.54; when we removed snowfields and polygons
,0.56 ha, the predicted area was further reduced to
18,579 ha (Fig. 5). This predicted area may be compared

Figure 2. Mean percentage of locations randomly selected from Olympic
National Park, Washington, USA, study area that were classified as suitable
for Olympic marmots (with the fifth and 95th percentiles of 2,500
bootstrap samples) by each of the 2,047 models, ordered in descending
order of performance. The results for the top 50 models are shown in the
inset. We developed models from Olympic marmot location data collected
in 2002–2005.
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to our 2002 model, which was similarly restricted to patches
.0.56 ha within the park. The 2002 model predicted an
area of 28,275 ha.
Elimination of the small patches did little to reduce

specificity of the model. Of the 376 occupied locations,
77.7% fell within predicted habitat. An additional 19.6% of
the 376 occupied locations were M100 m from the predicted
area and so would likely be detected during a survey of the
area. Of abandoned locations, 71.9% fell within predicted
habitat and 21.1% were M100 m from predicted habitat.
We consider 100 m to be the approximate maximum
distance at which active marmots or large burrows would be
visible to an attentive surveyor from the edge of the
predicted area; in fact, that distance will vary according to
topographic and vegetative features in an area. Only 4,653 ha

of rock were classified as suitable for marmots in our new
model, as compared to 20,454 ha identified as potential
habitat in the original model. However, the reduction in
over-prediction of rock came with a cost; 6,575 ha of trees
were predicted as suitable in the final model, whereas map
cells with trees were excluded from the 2002 model.

DISCUSSION

Mahalanobis distance-based models are useful for identify-
ing suitable habitat but without a formal approach to
variable selection, one had to make decisions about what
variables to include in a final model based only on expert
opinion or by experimenting with different variable
combinations. Because inclusion of redundant or uninfor-
mative variables may reduce specificity of the model, the
lack of a method for identifying useful covariates represent-
ed an important limitation on the use of the Mahalanobis
distance to model habitat. Partitioning variance in the data
set has been proposed as a way to identify important
variables (Dunn and Duncan 2000, Browning et al. 2005,

Table 2. Means and standard deviations of habitat covariates at 376 locations occupied by Olympic marmots, 2002–2005, and at 1,000 random points
within the Olympic National Park, Washington, USA, study area, number of times each covariate appeared in the highest ranking 100 models, and whether
the covariate was included in the final habitat model for Olympic marmots.

Covariate

Occupied
locations

(x̄)

Occupied
locations

SD

Proportion
of occupied
locations

Random
locations

(x̄)

Random
locations

SD

Proportion
of random
locations

No. times
included in

top 20
models

No. times
included in
top 100
models

Included in
top-ranked
model?

Elevation (m) 1,680 119 1,594 194 20 100 Yes
Slope (u) 25.37 11.18 30.55 11.71 8 53 No
Rock 6 7 8 9 20 93 Yes
Meadow 10 8 4 6 20 99 Yes
May insolation 37.32 3.06 35.64 4.39 20 91 Yes
Aspect NE/SW
(proportion NE) 0.37 0.48 19 65 Yes

Aspect NW/SE
(proportion SE) 0.56 0.57 20 78 Yes

Tree (proportion
with trees) 0.18 0.33 8 50 No

SD of slope 5.60 2.90 5.75 2.94 9 44 No
Planiform curvature 20.82 6.10 20.03 7.67 7 38 No
Profile curvature 0.88 10.14 20.37 12.63 15 62 Yes

Figure 3. Sorenson’s similarity coefficient relative to the top-ranked model
for each of 2,047 models of Olympic marmot habitat in Olympic National
Park, Washington, USA. Models that included trees as a covariate are
shown with black crosses and models that did not include trees are shown
with gray squares. The gray line indicates the maximum possible value of
the similarity coefficient for each model, given the proportion of the
random points classified as suitable by the top model and the model under
consideration. We developed models from Olympic marmot location data
collected in 2002–2005.

Figure 4. Cumulative frequency curves of Mahalanobis distance values
from the highest ranking of 2,047 models of Olympic marmot habitat in
Olympic National Park, Washington, USA, for 4 data sets. We developed
models from Olympic marmot location data collected in 2002–2005.
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Rotenberry et al. 2006), but has statistical and practical
weaknesses when used to model habitat.
Our model comparison procedure allowed us to overcome

a major limitation of the D2 statistic as a means of modeling
habitat, the lack of robust and practical variable selection
procedure. For our data set, the comparison process
indicated that to obtain the highest specificity (that is,
minimize P̄r80) in identifying habitat, only 7 of the original
11 habitat covariates should be used. Only a handful of
models approached the top model in specificity and most
were similar in structure to the top model, indicating that
the comparison procedure had identified the most useful
variables. Inclusion of trees in several of the top models did
represent a deviation from this pattern. In particular, as
indicated by low Ssc values, models including trees tended
to predict somewhat different habitat configurations from
models without trees. The highest ranked model outper-
formed the others (including those with trees) in multiple
metrics. Despite the many models we compared, there was
no indication that the top-ranked model over-fit the data.
The cumulative frequency curve of the abandoned locations
was almost identical to that of the training data even though
these abandoned locations included many mountains or
ridge systems not represented in the occupied data set and
were generally further south and west than occupied
locations.
The model comparison procedure was able to identify a

model that we would not have identified otherwise.
Covariance among explanatory variables and, thus, the

amount of additional information each variable brought to
the model, was considered much more efficiently than casual
inspection could do. Whereas several variables were obvious
candidates for inclusion—for example meadow, on which
marmots have a well-established and obvious dependence
(Barash 1989, Armitage 2000), or May insolation, for which
there were large differences between means and variances of
these variables at occupied and random locations (Ta-
ble 2)—inclusion or exclusion of others was less obvious.
Based only on observed differences in distributions of
occupied and random locations, we would probably have
included trees but not aspect NW/SE. However, the model
comparison procedure identified trees as less informative
than aspect NW/SE, which was included in the top model
and 78 of the top 100 models.
Some may object that comparison of all possible models is

data-dredging. However, the primary objective of our
habitat modeling effort, like that of many others, was not
to test hypotheses but to produce the best possible predictive
model. The more relevant concern was that the resulting
best-model would over-fit the data and would have little
predictive power when applied to new data. In fact, there
was considerable variability in which model was top-ranked
among the different bootstrapped sample replicates, con-
firming that results based on one data set could be
idiosyncratic. However, the highest ranked model was the
best fit for 25% of sample replicates and transferred well to
the abandoned location data, indicating that we had
surmounted the over-fitting problem.

Figure 5. Predicted distribution of suitable habitat for Olympic marmots (dark gray) within Olympic National Park, Washington, USA, based on the top
ranked, 7-variable model, clipped to the extent of the park, from which we removed snowfields and patches ,0.56 ha. Also shown are additional areas
predicted by the 2002 model that were not predicted by the current model (light gray) and the 376 occupied locations used to build the model (black
triangles). A number of the abandoned locations used in evaluating the fit of the model are also shown in the inset (black crosses); .90% of both abandoned
and occupied locations fell within 100 m of the predicted habitat. Occupied and abandoned locations were collected in 2002–2005.
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Finally, it is important to recognize that although
computation of the D2 statistic for each cell is independent
of choice of study area, our model comparison metric was
not. To produce the most specific model possible, we
advocate defining the study area as narrowly as can be
biologically justified; thus, we placed a lower limit on
elevation and removed heavily treed map cells from
consideration. If our study area had been the entire park,
it is probable that the top-ranked model would have
included lack of trees as a predictor, because most of the
park was forested. Similarly, without a priori removal of map
cells with closed canopy from the study area, it is probable
that trees would have been included in all the top models.
Habitat identified as suitable by a given model would not
have changed but the models would have ranked differently.

Olympic Marmots
By applying our approach to Olympic marmots, a declining
endemic species of concern, we confronted the method with
problems typical of sampling habitat for small and declining
species. The final habitat model successfully identified
suitable habitat for the Olympic marmot, based on
quantitative and qualitative criteria. The model accurately
identified currently occupied locations used in building and
testing the model and also identified as suitable most
abandoned areas of which we were aware and several
unsurveyed areas where backcountry travelers have since
reported marmots or suitable habitat. Although by con-
struction only 80% of the 376 occupied marmot locations
used to build the final model fell within the predicted
habitat, .96% of occupied locations and .90% of
abandoned locations were ,100 m from predicted habitat
and, thus, were likely to be found by observant workers
surveying predicted habitat. The variables included in the
best model are biologically meaningful and several have been
previously suggested as being important to marmots.
The final model did predict lightly forested areas more

often than we would have preferred, although marmots are
found close to or in lightly treed areas on occasion. In the
original 10,000 locations, there were undoubtedly poor GPS
fixes and transcription errors, as well as marmots that were
in atypical habitat. Although we believe that errors were rare
and we removed the most obvious ones, the subsampling
process by which we reduced our initial database of presence
locations likely increased the frequency of erroneous
locations in the data set. Errors that resulted in presence
data being located in inappropriate habitat were likely to
result in those locations also being .125 m from other
occupied locations; thus, these erroneous and misleading
points would have been retained during subsampling. In
fact, increasing the subsampling buffer from 125 m to 200 m
increased the frequency of these treed map cells from 17.8%
to 19.1%. We considered using only hibernacula locations
(Borgo 2003), or hibernacula and natal burrows, but our
data for these were restricted to the northeast and sample
sizes were limited. We also considered removing all
locations in map cells classified as treed but we knew many
of these to be valid.

Because D2 models emphasize the most commonly
occupied habitat type, rare but preferred types may not be
identified as highly suitable. If currently rare but preferred
types are thought to be important components of potential
changes in species distributions resulting from habitat
improvement projects, climate change, or human-mediated
introductions, D2 models may need to be supplemented
(Knick and Rotenberry 1998). For example, preference-
based models (e.g., Lele and Keim 2006) may be useful in
these conditions, although these models remain considerably
more difficult to implement.

MANAGEMENT IMPLICATIONS

A critical step in any modeling effort is to select analytical
techniques appropriate for both the question at hand and
the available data. In situations where absence data are
unavailable, presence-only approaches such as the Mahala-
nobis distance may be the obvious choice. Even when
presence–absence data are available, we recommend that
these data be carefully evaluated before they are used to
model habitat for species of conservation concern, because
absence data may not be a reliable indicator of habitat
nonsuitability. If a presence-only method is justified, we
recommend the Mahalanobis distance approach because it is
both effective and intuitive. In cases where biology of the
species is less than perfectly described, as is often the case for
species of conservation concern, our model comparison
method can be used to identify the most useful set of
variables to include in habitat models and may shed light on
the species biology as well. We also envision situations in
which a set of habitat covariates known to be important are
included in all models and our approach is used to select
among those covariates whose importance is less clear,
which would limit the number of models compared,
although top models should always include the most
important covariates regardless of how many extraneous
covariates are tested. In the common situation where
presence-only data are available for conservation decision-
making, our method will identify the model from that set
that best minimizes over-prediction while still accurately
identifying suitable habitat.
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