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ABSTRACT  

Juvenile recruitment is a key parameter in understanding ungulate population dynamics. 
Traditional methods in population composition surveys, such as estimating young: adult-female 
ratio’s, can be precluded by cost, safety, and feasibility. The use of remote cameras provides a 
potentially cutting-edge tool to apply to wildlife population estimation techniques. While the 
prevalence of remote cameras in ungulate studies has increased, few studies have used cameras 
to estimate vital rates, such as recruitment or survival. Here, we tested the potential of remote 
cameras to estimate calf: cow ratios and calf survival of elk (Cervus elaphus) using the Royle-
Nichols (2003) occupancy model. Using the Royle-Nichols (2003) model, data collected from 
cameras on unmarked individuals can estimate detection probability and abundance. 
We compared camera-based estimates of calf: cow ratio to traditional ground-based estimates 
obtained from group classification surveys.  We test this approach in a partially migratory elk 
population at the Ya Ha Tinda (YHT) Ranch, Alberta, Canada. We deployed cameras (n=44), 
across the YHT, a working horse ranch and important elk winter range. We created a Royle-
Nichols occupancy model for female and young-of-year elk, estimating abundance of respective 
age classes for a 110-day sampling interval between 15 May – 1 September 2018. We estimated 
calf survival by comparing the abundance estimates of calves between 7 primary sampling 
periods and determined the effect of abiotic, biotic and anthropogenic covariates on detection 
probability and abundance. Our camera-based ratio results made biological sense; following 
expected trends in detection variability, peak calf abundance, and declining ratios associated with 
neonatal mortality. We then compared the estimates of calf survival and group composition to 
those of traditional field estimates collected in the same time period.   We conducted a Pearson 
correlation test and found an r=0.426 correlation between our camera-based and ground 
observations of calf:cow ratio. Although the correlation was moderate, ground-based estimates 
were biased due to sightability of hiding calves. Thus, our results demonstrate the utility of using 
remote cameras to derive important parameters for understanding ungulate population dynamics.



 2 

Acknowledgements 

Funding for this project was provided by the American Indian College Fund, HOPA Mountain 

Native Science Fellows, Montana Institute on Ecosystems Alberta Environment, Parks Canada, 

Alberta Fish and Wildlife, Rocky Mountain Elk Foundation, Safari Club International – 

Foundation, Alberta Fish and Game Association, Alberta Conservation Association, Ministers 

Special License Funds, the Canadian National Sciences and Engineering Research Council 

(NSERC) Discovery grant to E.H. Merrill, and by the National Science Foundation (USA) Long-

term Research in Environmental Biology grant (LTREB) to Mark Hebblewhite and Evelyn 

Merrill (1556248). 

 I thank Rick and Jean Smith, Parks Canada staff, for their generous hospitality and 

support of the research I conducted. I am forever grateful to Tom McKenzie and James Spidle 

for teaching me how to ride a horse and assisting me in servicing cameras. I thank the University 

of Alberta graduate students whom I learned so much from and developed lifelong friendships 

with; Jacky Normandeau, Kara MacAulay, Jodi Berg and Erik Spilker. I especially thank Mitch 

Flowers for his collaboration on this project, servicing far more cameras than I did and 

classifying hundreds of thousands of images. I thank Dr. Evelyn Merrill for her valuable insight, 

knowledge, and hospitality when I was in Edmonton.  I also thank Dr. Robin Steenweg for 

helping me set-up cameras, understand how to properly log data, and classify images. I thank Dr. 

Mark Hebblewhite, my academic advisor, for his contagious enthusiasm, positivity, and 

encouragement. I thank Jesse Whittington for his tremendous support and willingness to share 

knowledge. I thank the Hebblewhite research lab for their acceptance of an undergraduate into 

the lab and their constant support for the research I conducted. I especially thank Hans Martin for 

his tremendous support in my undergraduate degree, you have made me a better field biologist, 



 3 

leader, and instilled a wealth of statistical knowledge to me. I thank Lorina Keery for teaching 

me important plant ID skills and her constant support. I thank Dr. Josh Nowak for his friendship 

in the lab and the ice rink. I thank Dr. Mike Mitchell for his support on this project. I thank Craig 

Martynn for his friendship during my last year of undergraduate studies. Last, I wish to thank my 

parents and sisters for their support, especially my mom, Amy Conrad for her editing assistance.  

Because of the collaborate nature of this project I use the “we” voice throughout this 

undergraduate thesis. 

 

 



 4 

INTRODUCTION 

Understanding demographic vital rates is key to implementing effective management strategies, 

especially in harvested populations where harvest-success and population abundance is 

correlated to food-security, public support, and agency revenue (Sinclair et al. 2005; Mills 2013). 

Population biology is derived from vital rates such as birth-rates, juvenile and adult survival, 

density dependent factors, fecundity, immigration, and emigration (Pulliam et al. 1991; Sinclair 

et al. 2005; Bender 2006). Methods used to estimate such parameters are often limited in scope 

by agency resource availability, such as: cost, feasibility, safety, and personnel. Modern 

conservation requires novel methods in monitoring technique to maximize sound ecological 

inference while balancing fiscal and personnel constraints (Burton et al. 2015). Remote cameras 

are the nexus of ecological monitoring, and have pronounced potential to eventually replace 

invasive, unsafe, and costly methods of species monitoring (Moeller 2017).  

 Ungulate population dynamics are usually determined by the combination of constant, 

high survival in adult females, and highly variable survival rates in juveniles (Gaillard et al. 

2000; Rathiel et al. 2007; Griffin et al. 2011). In large herbivores, adult female survival is 

commonly identified as the most important vital rate with the greatest influence on population 

growth rate (Nelson and Peek 1982; Escos et al. 1994; Walsh et al. 1995; Eberhardt 2002). 

However, understanding the factors that influence juvenile recruitment is equally important 

because ungulate population dynamics may be disproportionately affected by juvenile survival, 

given its variability and sensitivity to population density and environmental stochasticity 

(Coughenour and Singer 1996; Unsworth et al. 1999; Rathiel et al. 2007). Numerous studies 

across a range of taxa have suggested that juvenile survival is the predominant driver of ungulate 
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population dynamics (Chitwood et al. 2016). For example, studies of moose (Alces alces, Ballard 

et al. 1981), elk (Cervus canadensis, Rathiel et al. 2007), mule deer (Odoicoileus hemionus, 

Unsworth et al 1999), and roe deer (Capreolus capreolus, Gaillard et al. 1993) concluded that 

annual survival of juveniles varies dramatically compared to survival of prime aged adults. Thus, 

estimating juvenile survival is paramount to understanding the mechanics of population 

dynamics in ungulates (Gaillard et al. 2000) In addition, the degree of variance observed in both 

adult and juvenile survival is dependent on geographic occurrence of the species (Owen-Smith 

and Mason 2005). For example, elk populations inhabiting northern montane ecosystems are 

subject to more severe climatic pressures, density dependent effects, and multi-predator 

communities (Brodie et al. 2013). Comparatively, elk inhabiting the Eastern United States do not 

contend with such factors and employ higher survival rates than their Rocky Mountain 

counterparts (Brodie et al 2013; Fisichelli et al 2014). Conventual and emerging methods of 

monitoring elk, therefore, must have replicability across the diverse ecosystem’s elk inhabit. 

 Traditional methods used to decipher demographic vital rates in ungulate studies include 

radio-telemetry (Unsworth et al. 1993; Raithel et al. 2007; Hebblewhite and Merrill 2011), and 

various indices including aerial counts (Storm et al. 2011), pellet counts, track surveys, and 

spotlighting (Fuller 1991; Collier et al. 2007). These indices, for example, aerial counts and 

spotlight surveys are plagued by issues of detectability bias, while pellet counts are challenged 

by variable defecation rates that cloud interpretation (Millspaugh et al. 2002; Duquette et al. 

2014). Indices often lack scientific rigor and are becoming largely irrelevant in addressing 

ungulate population dynamic questions (Collier et al 2013).  Agencies, therefore, often rely 

primarily on sightability adjusted aerial surveys or radio-telemetry studies to monitor population 

dynamics of ungulates (Harris et al. 2008). A suite of population and habitat inferences can be 
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determined by the use of radio-marking animals. Migratory behavior and influences of habitat 

can be studied using Global Positioning System (GPS) collars (Bishop et al 2005; Middleton et 

al. 2013). Cause-specific mortality in neonates can be examined by ear-tagging or use of 

expandable collars (Pojar et al. 2004; Raithel 2005; Berg 2019). Despite widespread acceptance 

and use, radio-collaring efforts present complex operational feasibility relating to cost, public 

relations (animal care), and safety. In addition, statistical assumptions must be met to estimate 

population vital rates from radio-telemetry including sufficient sample size, random sample and 

independence of monitoring sessions of marked animals (Duquette et al. 2014; DeCesare et al. 

2016). These assumptions require large-scale efforts that are costly and resource intensive. This 

creates a niche for ecological monitoring to become cost-effective, non-invasive, and backed by 

statistical rigor that holds similar, if not more strength than traditional means of monitoring.  

 Recruitment is defined as the process in which new individuals enter a population 

(Sinclair et al. 2005). Specific to wildlife management of ungulates, this means recruitment of 

individuals that were born into the population and survived to a specific age-class, such as a 

reproductive adult (Schaub et al. 2006; Chandler et al. 2017). Traditional methods to estimate 

this critical parameter include aerial or ground surveys of group composition of young:adult 

ratios in late spring (Neal et al. 1983; Minta et al. 1989). These methods, however, especially 

aerial surveys are costly and unsafe.  Capture-recapture methods are an alternative widespread 

framework for estimating recruitment with imperfect detection.  There is a need for methods that 

can accurately identify trends in recruitment through space and time (Garton 2001; Hebblewhite 

and Merrill 2011).  

 Camera-trap surveys are emerging as a widely accepted metric population-level inference 

and have growing potential in the realm of ungulate studies (Royle and Nichols 2003; Fiske and 
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Chandler 2011). Uniquely identifiable species such as tigers (Panthera tigris), wolverines (Gulo 

gulo) and zebra (Equus quagga) allow camera-based studies to be used in spatially explicit 

capture-recapture models to estimate abundance (Royle et al. 2014). For most herbivores, 

individuals are not uniquely identifiable and therefore present researchers with a complex 

challenge of estimating demographic parameters in an unmarked population. However, there are 

a growing number of capture-recapture models designed to offer insights to abundance for 

unmarked animals such as ungulates (Royle and Nichols 2003; Chandler et al. 2013; Moller et al. 

2018). N-mixture models are also used to estimate abundance of unmarked populations (Royle 

2004) yet, they can be biased in populations where animals are detected at multiple cameras 

(Keever et al. 2017; Moeller 2017).  Few studies have explored estimating juvenile recruitment 

in ungulates and the effectiveness of such methods compared to conventional studies. Chitwood 

et al. (2016) found that camera-based recruitment estimates were correlated to fawn (white-tailed 

deer, Odocoileus virginianus) survival estimates at Fort Bragg military instillation, North 

Carolina.  Ikeda et al. (2013) conducted a similar study with Sika deer (Cervus nippon) in Japan 

and found camera and ground counts were correlated. Duquette et al. (2014) also found that 

inferences about white-tailed deer recruitment and population dynamics in the Upper Peninsula 

of Michigan were correlated from occupancy modeling and radio telemetry-based estimates. 

There are currently no studies on elk that compare remote-camera derived vital rates to 

conventional methods (ground observations, aerial counts etc.). 

The objective of our study was to determine the potential for remote-cameras to provide 

reliable recruitment estimates in a well-studied elk population (Hebblewhite et al. 2006), 

compared with more conventional methods of estimating recruitment such as ground-based 

surveys. Extensive long-term research has been conducted at the Ya Ha Tinda, Alberta, 
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examining factors that drive elk migration, adult survival, predation, calf survival from over 300 

collared animals over 18 years (Hebblewhite and Merrill 2011; Hebblewhite et al. 2018). In 

addition, since 2013, there has been an extensive camera-trap sampling design overlaying the 

main winter range study area. This presents an ideal opportunity to test the relationship between 

conventional and modern techniques in monitoring elk recruitment. We hypothesized that our 

camera-based estimates would reflect similar trends in calf: cow ratios as our traditional ground-

based monitoring methods.  

 

METHODS 

Study Area  

The Ya Ha Tinda Ranch is a Parks Canada owned working horse ranch and is primary winter 

range habitat for the Ya Ha Tinda (YHT) elk population.  The YHT is located on the east slopes 

of the Alberta Rocky Mountains, 13 km adjacent to Banff National Park (51’8’’ 300 N, 115’8’’ 

300 W) and is approximately 4000 hectares and runs 17 km along the north bank of the Red Deer 

river under the jurisdiction of the Department of Canadian Heritage — Parks Canada Agency. 

Throughout the study area, topography varies from 1,600 meters to 2500 meters. The YHT is 

defined by rolling intact montane fescue (Festuca campestris) grassland surrounded by aspen 

(Populus tremuloides), Engelmann spruce (Picea engelmannii), and lodgepole pine (Pinus 

contorta) forests. Willows (Salix spp.) and dwarf birch (Betula glandulosa) are abundant in the 

grassland-forest ecotone. Average seasonal precipitation for 2018 was 398 mm (Government of 

Alberta 2018). From May to September during the study period, temperatures averaged 10˚C 

(ranging from -3˚C to 29 ˚C) and precipitation averaged 188 mm (Government of Alberta 2018) 
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Low precipitation and westerly winds (i.e., chinooks) keep the YHT relatively void of 

snow in the winter (Berg 2019).  Ya Ha Tinda translates to “mountain prairie” in the Stoney-

Sioux language, aptly describing the azonal, high-elevation, 20-km2 montane rough fescue 

grasslands along the north side of the Red Deer River. The YHT represents one of the most 

pristine and largest rough fescue montane grasslands left in Alberta. Elk are the most abundant 

ungulate in the study area with a population that peaked in the 1990’s at ~2000 individuals (Berg 

2019). Elk demographic data collection began in 1985 (Morgantini and Hudson 1985) has been 

on-going since 2002 (Hebblewhite et al. 2006).  Recent winter population-counts estimate the 

population to be stabilizing around ~400 individuals (Killen et al. 2016). The YHT elk 

population is partially migratory, with polymorphism for migrant and resident behavior. Migrant 

elk depart the winter range in May or June for summer ranges, returning to winter ranges from 

early September–November (Morgantini and Hudson 1989; Eggeman 2012; Berg et al. 2019).  

Although elk dominated, white-tailed deer, moose, mule deer, and bighorn sheep (Ovis 

canadensis) persist in and around the ranch. Alternate prey species population trends are less 

well-known, whitetail deer have undergone significant population expansion in recent decades 

— bighorn sheep have been relatively stable while mule deer and moose appear to be declining. 

The YHT is home to a rich diversity of carnivores including grizzly bears (Ursus arctos ), 

wolves (Canis lupis), black bears (U. americanus ), cougars (Puma concolor ), Canada lynx 

(Lynx canadensis)  and coyotes (Canis latrans). Juvenile and adult elk primary sources of 

mortality are; wolves, grizzlies, cougars, and humans (during limited license hunt in the early fall 

and year-round First Nations’ harvest).  
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Deployment  

We deployed n=44 Reconyx (model HC600; HC900; Holmen, WI) in the winter of 

2016/2017 in a previously established occupancy monitoring grid, n=7 (Steenweg et al. 2016) 

and an additional 37 cameras in an intensive 2.5 km2 grid within the YHT ranch boundaries 

(Flowers 2019, Fig. 1). Camera locations were selected by a combination of systematic sampling 

(Steenweg 2016) and random placement within a systematic sampling grid (Flowers 2018). 

Cameras were deployed in accordance with Parks Canada Remote Camera Protocols (Heuer, 

Forshner, Whittington 2015) to maximize consistency for continued large scale camera-trap 

projects across study areas (Hunt and Bourdin 2015; Steenweg, Whittington, and Hebblewhite, 

2015; Steenweg et al. 2016). Cameras were attached to trees at waist height. Settings were 

selected to “rapid-fire” to maximize photos of species, 5 photos were taken per trigger with no 

“time-out” between events. Vegetation was cleared in front of cameras to reduce false triggers 

from abiotic movement (wind-veg events).  Cameras were serviced 2-3 times per-year to replace 

batteries, swap SD cards, and confirm alignment and function. Species were classified using 

Time-lapse software (Greenberg & Godin 2015) by trained technicians from the University of 

Montana and University of Alberta.  YHT remote camera data was integrated into Parks 

Canada’s Remote Camera database, contributing to multi-species monitoring efforts conducted 

across mountain parks.  

 We defined an event as a species (or group) that triggered photo sequences and were not 

separated from pictures by more than ten minutes.  Elk events separated by more than 10 minutes 

were not considered a new event if there were other individuals present beyond the camera’s 

field of detection throughout consecutive sequences. This can occur when the majority of a 

group has bedded down beyond the camera’s range of detection and individuals closer to the 
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camera are photographed intermittently. This definition of an event was applied only when it 

could be confirmed that the same individuals are present in the background, recognized via 

unique collar IDs, antler configurations, or by remaining bedded in the same position throughout 

(Flowers 2019). Elk events were classified by denoting sex, age (young of year, yearling and 

adult), number of individuals, collar/tag visible, direction of travel, antler size, and any unique 

behavior. Photographs of human activity were subject to the same classifying protocol as wildlife 

and were denoted as either hikers or horseback riders (i.e. separate species for modelling 

purposes). Total counts of both humans and horses were recorded, it is important to note human 

pictures are deleted immediately after being integrated per Parks Canada protocol relating to 

privacy (Heuer, Forshner, Whittington 2015).  

Study Period  

 We chose our sampling period based on the biological life history of calf elk in our study 

area. Our study period began 15 May 2018 and ended 1 September 2018, totaling 110 sampled 

days. The first calf to be detected by a camera was 15 May 2018. We ended our study period on 

September 1 for two reasons; first, elk calves begin to lose distinctive spots towards the end of 

August (Grant 1999; Beck et al. 2006), which could influence classifier error by mistaking large 

elk calves void of spots for yearling individuals. Second, a significant portion of migratory elk 

return to the YHT to breed in September (Hebblewhite et al. 2006, Eggeman et al. 2016). Thus, 

we ended our sampling period to prevent bias of age ratios due to the sudden influx of elk in our 

study area. The 110 days of camera-data was further partitioned into five, three-week sample 

intervals to best account for detection probability (i.e., hiding period) and calf phenology. Early-

spring was defined between (15 May – 5 June), spring (6 June– 27 June), summer (28 June – 19 

July), late summer (20 July – 10 August), and fall (11 August – 1 September). Ground 
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observation data was temporally partitioned identical to remote-camera data. We converted adult 

female and young of year data to detection/non-detection for each sample interval to model 

abundance.  

 

Figure 1. Distribution of remote cameras (n = 44) across the winter range of the Ya Ha Tinda’s 
partially migratory elk population in year 2018, along the eastern slopes of the Rocky Mountains 
adjacent to Banff National Park (green), Alberta, Canada. 

 

 
Statistical Modeling 

We first fit the Royle-Nichols model to estimate adult and calf elk abundance using the 

occuRN function (see Royle and Nichols 2003, and below for details) in the package unmarked 

(Fiske and Chandler 2011) in program R (R Development Core 3.3 Team 2011).  Next, we 
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describe this Royle-Nichols’ (2003) model.  We then estimate calf:cow ratios using standard 

ground based visual classification. Finally, we then compare estimated calf:cow ratios using our 

two methods (occuRN, ground) to test our hypothesis that remote camera-based estimates would 

be similar to conventional methods.  

Royle-Nichols’ Model 

 The occuRN function fits the latent abundance mixture model described in Royle and 

Nichols (2003), which uses binary detection/non-detection data of un-marked individuals by 

linking heterogeneity in detection probability to differences in site abundances modeled with a 

Poisson process (Royle and Nichols 2003).  For detection to not occur at a site, none of 

the N i animals present can be detected. If each animal has a probability r of detection, then 

overall detection probability of any individual is given by: 

" = 1(1 − ')!  (Eq. 1) 

where k is the number of sampling replicates and p is the sampling-replicate-specific detection 

probability (Royle and Nichols 2003; MacKenzie and Royle 2005). We defined k (sampling 

replicate) at 7 because detection probability estimates were closest to 0.80 when set to this 

number (M. Hessami, unpublished data). Data input for this model is based on binary,	presence/ 

absence outputs that are fitted to the occuRN function in program unmarked. The above equation 

operates under the transformation relating abundance to detection via the parameter r. Covariates 

of lambda (abundance) are modeled with the log link and covariates of '"# are modeled with the 

logit link. 

)"#~	+,'-./001('"#)  (Eq. 2) 

Thus, the detection (p) of a single individual in a sampled site (i) during a sample period (j) is 

modeled as a Bernoulli variable following:  
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""# = 1 − 21 − '"#3
$%   (Eq. 3) 

Where 4" is the local site abundance at site i.  Next, the latent abundance, Ni, which is calculated 

the mean N per camera site is modeled as Poisson:  

4"~5.166.-(7")   (Eq. 4) 

Covariates  

We adopted the classic recommended approach in fitting occupancy models by first 

determining covariates that affected detection probability, and second by then fitting covariates 

hypothesized to affect abundance in the occuRN model (Royle and Nichols 2003; Duquette et al. 

2014). We considered both methodological and ecological covariates hypothesized to potentially 

affect both detection, r, and local abundance, N, at a camera site based on previous studies 

(Steenweg 2016, Steenweg et al. 2016).  We used site and GIS-based landscape covariates to test 

their predictive power on detection and occupancy probabilities (Table 1).  We centered and 

scaled each covariate to normalize differing metrics of performance within each site covariate. 

Within our tested covariates, we included four spatial increments of scale per covariate (500, 

250, 100, 20 meter) to understand the degree of influence each biotic, abiotic, and anthropogenic 

covariate had on elk detection and occupancy. Further, we fit two sets of occuRN models 

following equation (1) for both elk calves (<4 months old) and adult female elk (> 1 year old). 

To further understand the effect of covariates on detection and following the occupancy 

modeling paradigm, we first modeled covariates hypothesized to affect r. Once we identified the 

best model for r, we proceeded to fit covariates on N.   
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Table 1. Camera site spatial and temporal covariates hypothesized to affect elk (Cervus canadensis) 
detection and abundance in Royle-Nichol’s (2003) occupancy models using remote camera data 
(n=44) at the Ya Ha Tinda elk population range in Summer 2018.  
Covariate Acronym Modeled on 

r (detection) 
Modeled on N 
(abundance) 

Biotic Variables    
Proportion of area burned (burns;at 3 scales) burns X X 
Normalized Difference Vegetation Index (NDVI; 
averages of July and August; 3 scales)               

NDVI X X 

-Dynamic Habitat Indices Seasonality (dhiseas; i.e. 
variability; 3 scales) 

DHIseas X X 

-Dynamic Habitat Indices cumulative (dhicum;i.e. total 
NDVI; 3 scales) 

DHIcum X  

-Dynamic Habitat Indices minimum (dhimin; 3 scales) DHImin  X 
-Land cover type(landcov), 7 levels:    
Open coniferous    
Closed coniferous    
Mixed deciduous    
Herbaceous    
Shrubs    
 
Abiotic covariates 
Topographic Position Index (TPI; at 3 scales)                                    
 

 
 
TPI 
 

 
 
X 

 
 
 

Anthropogenic covariates  
Distance to secondary road  
Proportion of area cut (cuts; at 3 scales)                                
Regeneration forest (regen; cuts+burns; at 3 scales) 
Distance to edge 

 
d2road 
cuts 
regen 
d2edge 

 
X  
X  
X 
X  

 
X  
X  
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Covariates were defined under three categories; biotic, abiotic, and anthropogenic. For 

Normalized Difference Vegetation Index (NDVI), we used maximum annual NDVI from year 

2006. For human disturbance, we included distance to nearest secondary (or primary) road. To 

model terrain ruggedness, we created a topographical position index (TPI) using Land Facet 

Corridor Designer tools (Majka et al. 2007). TPI compares the terrain at a location to its 

surrounding area at a specific spatial scale where very negative values of TPI indicate low 

elevation compared to surrounding area (i.e. valleys) and positive values indicate higher 

elevations (i.e. peaks). Aspect, elevation and slope were estimated from a 30m resolution Digital 

Elevation Model. We then calculated slope using the Spatial Analyst extension for ArcGIS 9.3. 

For proportion of area burned, we calculated the proportion of the landscape that has burned in 

the last 115 years. We also included percent crown closure. We created a distance to streams 

covariate from a stream layer downloaded from www.GeoBase.ca. To categorize vegetation 

across the study area, we modified the landcover classification created by McDermid (2006) 

which used Landsat 5 Thematic Mapper (TM) and Landsat 7 TM sensors. We updated and 

consolidate this classification into 7 categories: open-coniferous, closed- coniferous, mixed-

deciduous, herbaceous, shrubs, water, and rock-barren. All other raster covariates were also at 

30m resolutions except NVDI (Steenweg 2016).  

Model Selection 

We conducted model selection on the detection process first for both calves and cow 

models, following advice from MacKenzie et al (2002).  These models included detection set to 

constant (~1 ~1), covariates effecting detection (~1+ covariate) and a null model. We used the 
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package corrplot in program R 3.3 to screen for collinearity (r< 0.7) amongst covariates in fitted 

top-models. Second, we then ran another series of models based on top combined or single 

covariates on the abundance component, using the top detection models (MacKenzie et al. 2002).  

Remote-camera sites did not have bait, lure, and all cameras were the same make and model, 

thus we did not consider any such methodological covariates on r.  Ultimately, we did not 

include any covariates on detection, and instead set detection as constant in our top unmarked 

models (see results). This was because there were trivial differences in p between top models 

with and without covariates (based on AIC), and because covariates did not make ecological 

sense (see Appendix A1 and discussion for details). We used a similar approach to conduct 

model selection for the best covariates affecting N, given the best detection model, as above.  We 

conducted model selection for the top detection process using AICc the Akaike Information 

Criterion for small sample sizes (Steenweg 2016).  

Deriving Abundance at a Site 

Next, we estimated latent abundance at each site, i, using the ranef function in unmarked 

using the empirical Bayes method (Fiske and Chandler 2011). This function estimates the top 

occupancy model’s posterior distributions for abundance (mean latent N for each site) at each 

site, and in each sampling period. This was then summed over all sites and used to derive the 

ratio of calves to females in each time period that we subsequently compared to ground 

observations. To derive a ratio, we then divided mean calf abundance by mean adult female 

abundance per sampling period (Duquette et al. 2016). We accounted for model selection 

uncertainty in our estimated abundance using model averaging approaches to obtain a model-

averaged abundance estimate across top models using Akaike weights if there were multiple 

models within the top 0-2 D AICc (Burnham and Anderson 2002). Standard errors and 
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confidence intervals for camera-derived ratios were calculated using the bootstrapping method in 

program R (R Core development team 2018). We ran 10,000 iterations per sampling period to 

derive bootstrapped estimates.  

	Ground Observations  

 We conducted population classifications as frequently as possible throughout the study 

period whenever a group of elk was encountered. Observers approached a group of elk in an 

inconspicuous manner from the furthest distance possible. Observes then denoted group size, 

number of adult females, young of year, adult males, and yearlings following standardized 

protocols (e.g., Smith and McDonald 2002). We used the same sampling period (110 days) and 

five sampling intervals to estimate calf: cow ratios. Estimates were derived by dividing calf 

estimates by cow estimates for respective intervals. We estimated the variance using the cluster 

sampling method where we treated each ratio of elk as a cluster (Cochrane 1977: page 249, 

Samuel and Garton 1994; Hurley et al. 2011) where R is ratio of calves to adult females, 8" is the 

number of calves in a group. 9" represents the number of adult females per group, 9 is the mean 

number of adult females per group, G is the number of groups observed, and N the number of 

groups in the population (Equation 5)   

:;<; = ('()*+,)
./01 	∑ (3%(45/%)1*

%67
.('   (Eq. 5) 

Correlation Between Ground and Camera Ratios 

Lastly, we tested our hypothesis that remote-camera based calf:cow ratios would be 

closely correlated with ground-based estimates.  We estimated the correlation coefficient 

between our camera- and ground-obtained estimates of calf:cow ratio using Pearson’s correlation 

coefficient. Second, we conducted linear regression to estimate the intercept (b0) and regression 

coefficient (b1) for the relationship between remote-camera ratios and ground observation ratios.  
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If ground and camera observations are perfectly correlated, then the b1 coefficient should be not 

significantly different than one (Ikeda et al. 2013; Chitwood et al. 2017). Similarly, if b0 = 0, then 

both estimators could be interpreted as being unbiased, at least with respect to each other.  

 

RESULTS 

Of the 44 camera’s we deployed, we used data from 37 operational cameras from the spring and 

summer of 2018 that we used in subsequent analyses.  

Detection  

Overall, there were a variety of spatial covariates that seemed potentially important in 

affecting detection, r, with a constant N model (Appendix Table A1). For example, our top 

model for detection of calves in time period 1 was distance to road (ndist_road.s) with a back-

transformed logit r value of 0.0248 (SE= 1.062, Appendix Table A1). In the subsequent 4 time 

periods, r was affected by Dynamic Habitat Indices, and distance to edge (SE= 0.232, 0.036, 

Appendix Table A1).  Adult Female top detection models had similar results with distance to 

road also showing the greatest effect on detection in time period 1, with a r value of 0.024 (SE= 

0.064, Appendix Table A2).   In most top model sets, i.e., 0-4 DAIC, there was also the null 

model (~1 ~1) indicating support for constant detection for calf elk. Because the best model in 

the presence of covariate effects on N usually resulted in the null model for detection (see below, 

Appendices), we proceeded using the constant only detection for subsequent models.  

occuRN Models  

Calves 

Overall, calf elk abundance models were driven by habitat productivity variables such as 

the Dynamic Habitat Index (DHI), NDVI, or regenerating vegetation at various scales (Table 4) 



 20 

). Most interestingly, however, for all of our final calf abundance models, the top model for 

detection was the constant model when evaluated in the presence of the spatial covariates on 

abundance (Appendix Table A1).  We discuss the evident substitution of covariate effects 

between p and N in the discussion but proceed reporting our top occuRN models with constant p 

for elk calves.  As a reminder, all covariates are reported in the standard deviation scale, and we 

only report coefficient estimates for the top model for brevity.  

 In the early spring, the top model for elk calves showed abundance increased with greater 

regeneration landcover classes within 500 m (b1 = 0.057, SE = 0.363, Table 4). In the spring, 

abundance increased with Dynamic Habitat Index scores within 100m (b1 = 0.014, SE = 0.623). 

For our third sampling period, summer, calf abundance increased with a decreased distance from 

roads (b1 = 0.070, SE = 0.983). For our fourth sampling period, late summer, abundance 

increased with higher NDVI August scores (b1 = 0.047, SE = 0.974), decreased distance to roads 

(b1 = 0.055, SE = 0.881), and Dynamic Habitat Index score at the 100 meters scale (b1 = 0.137 

SE = 0.519). For our last time period, fall, Dynamic Habitat Index score within 100m increased 

abundance (b1 = 0.280, SE = 1.50). 

Adults 

 Overall, adult female abundance models were driven by habitat productivity variables 

such as the dynamic habitat index, NDVI, or regenerating vegetation at various scales (Table 5). 

Similar to calves, however, the top model for detection of adults was also the constant model 

when evaluated in the presence of the spatial covariates on abundance (Appendix Table A2).  In 

the early spring, adult female abundance increased with decreasing distance from road, increased 

with NDVI score at the 20m scale (b1 = 0.074, SE = 0.911), and increased with DHI at the 100-

meter scale (b1 = 0.047, SE = 0.974). In the spring time period, abundance also increased with 
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Dynamic Habitat Index scores within 100m (b1 = 0.039, SE =0.980). For our third sampling 

period, summer, adult female abundance increased NDVI scores at the 20m scale (b1 = 0.744, SE 

= 0710). For our fourth sampling period, late summer, abundance increased greater distance from 

roads (b1 = 0.023, SE = 0.214), Dynamic Habitat Index scores within 100 meters (b1 = 0.057, SE 

= 0.233), and NDVI scores at the 20m scale (b1 = 0.086, SE =0.580). For our last time period, 

fall, regeneration within 500m increased adult female abundance (b1 = 0.021, SE = 0.603). 

Abundance Estimates 
 
Calf Abundance 

We recorded 989 elk events in our sampling period with 449 calf elk events. Most calf 

events were with a female, but there were 59 events of only a calf detected on a camera. Because 

of model selection uncertainty (Table 4, we report model averaged abundance estimates. Total 

model-averaged abundance for early spring calf estimate was: 26.27 (SE: 0.443), spring 174.60 

(1.473), summer 26.80 (0.514), late-summer 20.57 (0.529), fall 65.70 (0.806, Table 3).  

Adult Female Abundance   

We recorded 930 adult female elk events from a total of 989 elk events. Because of 

model selection uncertainty (Table 5) we report model averaged abundance estimates. Total 

model-averaged abundance for early spring adult female estimates were:116.85 (SE: 1.442), 

spring 225.70 (1.844), summer 86.04 (0.949), late-summer 71.86 (1.014),  fall 338.98 (2.190, 

Table 2).  

Remote Camera Calf:Cow Ratios  

The corresponding early spring calf: cow ratios were: 0.230 (95% CI, 0.05 — 0.633, 

Figure 2), spring 0.77 (0.021 — 0.576), summer 0.31 (0.467 — 0.761), late-summer 0.29 (0.067 

— 0.553), fall 0.19 (0.07 — 0.741, Figure 2).  
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Correlation between Camera-based and Ground Ratios  

We conducted 136 population classifications of the YHT elk population between 15 May 

– 1 September 2018. The early spring calf:cow ratio was: 0.040 (SE: 0.006), spring 0.138 

(0.011), summer 0.250 (0.013), late-summer 0.321 (0.025), fall 0.257 (0.02187, Table 6).  These 

results had moderate correlation with the camera-based estimates (Figure 3), except during the 

spring period when ground estimates were 0.637 lower than estimates from the remote cameras.  

Considering all 5 time periods, the correlation between ground and camera estimates was only r 

= -0.223, p = 0.711, n=5. Moreover, the linear regression estimate of b0 = 0.46 (SE =0.2652), and 

b1 =-0.51 (SE= 1.181), indicating no significant relationship between ground and camera 

estimates. 

However, if we remove the spring period when estimates were divergent, the correlation 

coefficient improved dramatically to r = 0.426 (p = 0.57,  n=4). Moreover, the b0 = 0.21 (SE = 

0.068) indicating minimal bias, and b1 = 0.19 (SE=0.286), indicating a moderate correlation 

between the two methods.  
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Table 2: Remote-camera estimates of adult female elk abundance from each 5-week sampling 
interval. Models were ranked using Akaike’s Information Criterion and K is the number of 
parameters. Estimated adult female site and detection probabilities and standard deviation (SD) 
of site abundance (summation of mean N abundance per site) or detection (logit-scale) are 
presented. 
Time Interval  r, p* Top Abundance 

Model  
K N(Abundance) SD 

Early Spring 
15 May-5 Jun 

0.0159; 0.99 ~1 ~ 1 + NDVIAug20.s 
+ ndist_road.s + 
dhimin100.s 

5 116.85 
 

0.949 

Spring 
6 Jun – 27 Jun 

0.0473; 0.99 ~1 ~ 1 + dhiseas100.s 3 225.70 
 

1.844 

Summer 
28 Jun – 19 Jul 

0.0744;0.99 ~1 ~ 1 + NDVIJul20.s 3 86.05 
 

0.949 

Late Summer 
20 Jul – 10 Aug 

0.0855;0.99 ~1 ~ 1 + NDVIAug20.s 
+ ndist_road.  s + 
dhimin100.s 

4 71.86 
 

1.014 

Fall 
11 Aug – 1 Sept 

0.0212;0.99 ~1 ~ 1 + regen500.s 3 338.98 
 

2.190 
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Table 3: Remote-camera estimates of calf elk (< 4 months old) elk abundance from each 5-week 
sampling interval. Models were ranked using Akaike’s Information Criterion and K is the 
number of parameters. Estimated adult female site and detection probabilities and standard 
deviation (SD) of site abundance (summation of mean N abundance per site) or detection (logit-
scale) are presented. 
 
Time Interval  r, p Top Abundance 

Model  
 K N(Abundance) SD 

Early Spring 
15 May-5 Jun 

0.057;1 ~1 ~ 1 + regen500.s 3 26.27 
 

0.443 

Spring 
6 Jun – 27 Jun 

0.013;1 ~1 ~ 1 + 
dhiseas100.s 

3 174.60 
 

1.473 

Summer 
28 Jun – 19 Jul 

0.070;1 ~1 ~ 1 + ndist_road. 
s 

3 26.79 
 

0.514 

Late Summer 
20 Jul – 10 
Aug 

0.137; 
0.99 

~1 ~ 1 + 
NDVIAug20.s + 
ndist_road. s + 
dhimin100.s 

5 20.57 
 

0.529 

Fall 
11 Aug – 1 
Sept 

0.029;1 ~1 ~ 1 + 
dhiseas100.s 

3 65.69 
 

0.806 
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Table 4. Top (< 2 DAIC) occuRN abundance models for calf elk for the 5 sampling period 2018, Ya Ha Tinda ranch, Alberta, 
Canada. For each time period, model structure of the occuRN model is given as first the covariates affecting detection, ~1, and second, 
the covariates affecting the latent abundance, ~ 1 + .  See Table 1 for covariate names.  Models are reported in rank order by DAIC, 
with reported Akaike weights, latent abundance (N) for each model, and then the model averaged weighted N for that time period.  

Time Model  DAIC AIC weights    N Weighted N 

 Early 
Spring 
 
 
 
 
Spring 
 
 
 
 
Summer   
 
 
 
 
 
 
 
 
Late 
Summer  
 
 
Fall  

~1 ~ 1 + regen500.s 
~1 ~ 1 + burns500.s 
~1 ~ 1 + dhiseas100.s + regen500.s 
~1 ~ 1 + ndist_road.s 
 
 
~1 ~ 1 + dhiseas100.s 
~1 ~ 1 + burns500.s +    dhiseas100.s 
~1 ~ 1 + dhiseas100.s + regen500.s 
~1 ~ 1 + dhicum100.s 
 
~1 ~ 1 + ndist_road.s 
~1 ~ 1 + dhimin100.s 
~1 ~ 1 + regen500.s 
~1 ~ 1 + dhiseas100.s 
~1 ~ 1 + burns500.s + dhiseas100.s 
~1 ~ 1 + dhiseas100.s + regen500.s 
~1 ~ 1 + burns500.s 
~1 ~ 1 + NDVIJul20.s 
 
 
~1 ~ 1 + NDVIAug20.s + ndist_road.s + 
dhimin100.s 
~1 ~ 1 + dhicum100.s + ndist_road.s + 
burns500.s 

0 
1.60 
1.82 
1.87 
 
 
0 
1.77 
1.72 
1.95 
 
0 
0.79 
0.96 
0.97 
0.97 
0.99 
1.67 
1.69 
 
 
0 
 
1.45 
 

0.258 
0.116 
0.103 
0.101 
 
 
0.309 
0.141 
0.131 
0.117 
 
0.136 
0.091 
0.083 
0.083 
0.083 
0.082 
0.079 
0.058 
 
 
0.249 
 
0.120 
 

23.56 
22.26 
23.97 
23.34 
 
 
163.42 
165.13 
167.48 
185.50 
 
29.90 
23.33 
25.56 
22.32 
27.02 
29.95 
22.77 
21.77 
 
 
24.24 
 
22.73 
 

26.27 
 
 
 
 
 
174.60 
 
 
 
 
26.80 
 
 
 
 
 
 
 
 
 
20.57 
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~1 ~ 1 + ndist_road.s + dhicum100.s + 
burns500.s 
~1 ~ 1 + NDVIJul20.s + dhimin100.s + 
regen500.s + burns500.s 
 
~1 ~ 1 + dhiseas100.s 
~1 ~ 1 + dhimin100.s 
~1 ~ 1 + dhicum100.s 
~1 ~ 1 + burns500.s 
~1 ~ 1 + NDVIJul20.s 
~1 ~ 1 + ndist_road.s 
~1 ~ 1 + dhiseas100.s + regen500.s 
 
 

1.45  
 
1.65 
 
 
 
0 
0.39 
0.51 
1.01 
1.03 
1.12 
1.97 
 
 

0.120 
 
0.109 
 
 
 
0.139 
0.114 
0.108 
0.084 
0.083 
0.079 
0.084 
 
 

22.73 
 
19.70 
 
 
 
72.24 
64.50 
64.67 
62.62 
61.68 
62.40 
74.02 
 
 

 
 
 
 
 
 
65.69 
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Table 5. Top (< 2 DAIC) occuRN abundance models for Adult Female elk for the summer sampling period 2018, Ya Ha Tinda ranch, 
Alberta, Canada. For each time period, model structure of the occuRN model is given as first the covariates affecting detection, ~1, 
and second, the covariates affecting the latent abundance, ~ 1 + .  See Table 1 for covariate names.  Models are reported in rank order 
by DAIC, with reported Akaike weights, latent abundance (N) for each model, and then the model averaged weighted N for that time 
period.  

Time Model  DAIC AIC weights    N Weighted N 

 Early 
Spring 
 
 
 
 
Spring 
 
 
 
 
Summer   
 
 
 
 
 
 
Late 
Summer  
 
 
 
 
 
 

~1 ~ 1 + NDVIAug20.s + ndist_road.s + dhimin100.s 
s 
 
 
 
~1 ~ 1 + dhiseas100.s 
~1 ~ 1 + burns500.s + dhiseas100.s 
~1 ~ 1 + dhiseas100.s + regen500.s 
 
 
 
~1 ~ 1 + NDVIJul20.s 
~1 ~ 1 + NDVIAug20.s 
 
 
 
 
 
~1 ~ 1 + NDVIAug20.s + ndist_road.s + dhimin100.s 
~1 ~ 1 + dhicum100.s + ndist_road.s + burns500.s  
~1 ~ 1 + ndist_road.s 
~1 ~ 1 + regen500.s 
 
 
 
 

0 
 
 
 
 
0 
1.79 
1.98 
 
 
 
0 
0.56 
 
 
 
 
 
0 
0.48 
0.79 
1.46 
 
 
 
 

0.558 
 
 
 
 
0.290 
0.119 
0.107 
 
 
 
0.239 
0.180 
 
 
 
 
 
0.150 
0.118 
0.103 
0.073 
 
 
 
 

140.76 
 
 
 
 
231.36 
230.48 
232.94 
 
 
 
78.13 
76.44 
 
 
 
 
 
86.53 
85.44 
65.31 
62.99 
 
 
 
 

116.85 
 
 
 
 
225.70 
 
 
 
 
 
86.05 
 
 
 
 
 
 
71.86 
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Fall  
 
 
 

~1 ~ 1 + regen500.s 
~1 ~ 1 + ndist_road.s 
~1 ~ 1 + dhiseas100.s + regen500.s 
 
 

0 
1.65 
1.91 
  

0.251 
0.109 
0.096 
 
 

318.91 
362.46  
317.92 
 
 
 
 
 
 

338.98 
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Table 6: Ground estimates of Ya Ha Tinda, Alberta, elk population calf:cow ratios from each 5-week sampling interval. Estimates 
were derived by summing total calf and total adult female group counts and dividing values to derive a ratio. Variance was calculated 
using the cluster sampling method (Cochrane 1977: page 249, Samuel and Garton 1994; Hurley et al. 2011).  
 

Time Interval  calf:cow  
ratio  

95% confidence 
Intervals    

Early Spring; 15 May-5 Jun 0.04 0.027—0.053 
Spring; 6 Jun – 27 Jun 0.137 0.115—0.159 
Summer; 28 Jun – 19 Jul 0.25 0.222—0.278 
Late Summer; 20 Jul – 10 Aug 0.32 0.270—0.370 
Fall; 11 Aug – 1 Sept 0.25 0.206—0.294 
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Figure 2. Sampling intervals on the X axis (three week-intervals) and calf:cow ratio value on the 
Y axis from derived remote camera (green) and ground estimates (orange) of the Ya Ha Tinda, 
Alberta, Canada elk population. 95% confidence intervals are shown on error bars.  
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Figure 3. Relationship between ground (X) and camera-based calf:cow (Y) ratio’s at the Ya Ha 
Tinda ranch, Alberta, 2018 showing a) the correlation for all 5 time periods (!!= -0.240, y= 
0.460x – 0.51), and b) same but with just 4 time periods, excluding the outlier, spring (!!=0.426, 
y=0.213x + 0.19).
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DISCUSSION  

 Our results offer the first empirical comparison of juvenile elk recruitment ratios derived using 

two methods; remote cameras and traditional ground observations. Ground observation and 

Royle-Nichols (2003) occupancy models corroborated initial differing trends in calf:cow ratios 

over the summer of 2018. Remote-camera ratio estimates made more biological sense when 

compared to ground observations in terms of timing of low, peak, and declining abundance. 

Many field studies of neonatal elk calf survival support our remote-camera trend in calf elk 

survival (Rathiel 2007; Griffin et al. 2011; Berg 2019). Namely, like many other ungulates, elk 

calf abundance peaks in early spring soon after birth, but rapidly declines following high 

neonatal (first 4-6 weeks) mortality (Berg 2019).   Ground observations roughly corresponded to 

our remote-camera based estimates, with the exception of the second spring time period. 

However, this time period immediately follows birth, and is associated with sightability bias of 

the hiding behavior of neonate elk calves during this time period (Johnson 1951). Thus, 

consideration of the biology of elk calves, and comparison to studies of marked elk calves further 

supports our hypothesis that remote cameras can estimate juvenile recruitment rates of elk and 

potentially replace traditional costly, labor intensive methods.  

Low sightability of elk (and other ungulates) during the ‘hiding’ phase lead to what we 

believe were biologically unrealistically low ground-based estimates in our second time period 

(0.138 vs 0.77).  Thus, it seems remote cameras can effectively detect and estimate local calf 

abundance during the hiding phase compared to ground based estimates. For the spring time 

period, calf:cow ratios was (0.770), reflecting the highest abundance of elk calves in keeping 

with previous studies in our study area of neonatal elk calf survival and abundance (Berg 2019). 
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In fact, this estimate, 0.77, makes biological sense given the high pregnancy rates of adult (> 2-

year-old) females in our population (Hebblewhite and Merrill 2011), and lower yearling 

pregnancy rates. This peak in recruitment ratio is likely a biologically realistic depiction of the 

rapid change in both the abundance and behavior of neonate calves as they transition from the 

hiding calf rearing phase, to the nursery and group integration phase (~26 days old) joining the 

population, increasing mobility, and thus detection (Grant 1999; Berg 2019).  Thus, when 

examining the correlation between ground and remote-camera based estimates, we removed this 

outlier (spring) from both camera-based estimates and ground estimates when we conducted our 

Pearson’s correlation to better model the relationship of recruitment (r=0.426, Figure 3b). 

Although our correlation is moderate between sampling methods, we believe our camera-based 

estimates depicted a more precise estimate of calf recruitment compared to ground observations 

and show promise as a method to non-invasively estimate ungulate recruitment.  

While our study provides the first evidence that remote cameras may provide a useful 

method for elk population monitoring, our results echo previous studies in other systems and 

species. For example, Chitwood et al. (2017) used known-fate modeling in program MARK to 

compare fawn survival rates based on radio-collar data to estimates of recruitment derived from 

camera-trapping efforts. They further assessed the relationship between survival and recruitment 

by using a Pearson’s correlation. Their results showed a strong correlation (!! value 0.758) 

between camera-based recruitment and radio collar-based survival when assessing year to year 

trends. In relation to our study, Chitwood et al. (2017) study design is similar to ours in the 

comparisons they conducted, yet they report a longer sample duration (6 years) and in turn 

produce more robust results assessing the relationship between their tested methods.  Future 

studies could compare previously collected neonate elk calf survival in our study area (Berg 



 34 

2019) to remote camera estimates. Ikeda et al. (2013) evaluated the use of camera-trapping for 

estimating population composition of sika deer in Japan.  However, like our study, they did not 

have marked neonate elk calves, but compared cameras to ground estimates. Their results cast 

doubt on the biological realism of their camera data to track fawn:doe ratio, seemingly because 

of the challenge of low detection of fawns during the birth pulse. However, their doe:buck ratios 

showed seasonal patterns that made biological sense.   

Finally, Duquette et al. (2014) employed the most similar study to ours by comparing radio-

telemetry and occupancy modeling using the Royle Nichols (2003) model to estimate population 

growth (λ) in white-tailed deer. They found estimates derived by radio-telemetry provides more 

precise population growth estimates whereas camera-based estimates had wide confidence 

intervals. Unmarked adult female abundance and fawn: doe ratios generally reflected trends in 

radiomarked deer survival and recruitment (Duquette et al. 2014). Review of these studies 

suggest that under certain conditions, remote cameras may be an effective means of tracking 

recruitment of ungulates in the neonatal period.  

We found no covariates with consistent effects on detection, especially when combined with 

the abundance part of the occuRN model.  Our study design used no known methodological 

factors such as baits, lures, or differences in camera types that may have affected the detection 

process (Steenweg 2016; Chitwood et al. 2017). While a previous large carnivore occupancy 

study conducted by Steenweg et al. (2016) at the YHT concluded camera-type (flash, no flash) 

bait and lure (selective sampling) were covariates that influenced the detection probability per 

camera site. Our study had no scent attractants or bait, and camera models stayed consistent 

throughout (Reconyx Hyperfire HC600 & HC900).  In our first phase of model fitting, our top 

covariates affecting detection (when abundance was modeled as a constant, ~ 1) were DHI, 
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NDVI, and distance to road (see appendix A1). However, especially when combined with the top 

ecological covariates, it seemed that these ecological covariates had stronger effects on the 

abundance process, and the top detection models were almost always simply constant detection 

models.  This interpretation is bolstered by the similar covariate coefficients when included in 

the p and N parts of the occuRN models.  There may be some unknown substitution between 

detection and ecological covariates in occuRN models that warrant further exploration.  

Regardless, in conclusion, we kept detection constant and did not include top covariate affecting 

models on abundance (N) estimates.   

Like any model, the Royle-Nichols (2003) model assumes that: 1) occupancy state at a 

site remains constant throughout the season (population closure in the case of the occuRN 

model). there is population closure within a sampling period, 2) detection events are 

independent, and 3) detection probability of a single animal is assumed to be constant across 

time.  When applying a model to a new scenario, such as estimating calf:cow ratios, it is 

important to assess assumptions (Duquette et al. 2014).  First, because of high adult female elk 

survival, the assumption of closure seems reasonable for adults (e.g., summer survival is > 0.92, 

Hebblewhite et al. 2018).  However, this assumption is more problematic for calves, obviously, 

because of the strong neonatal mortality hazard (Griffin et al. 2011; Berg 2019).  Yet, we feel 

that within our 5-week time periods, the assumption of closure for elk calves is approximate.  

More broadly, we limited our sampling period to summer (September 1) to avoid problems with 

population closure triggered by the return migration of the migratory component of the 

population (Hebblewhite et al. 2006).  Future studies could develop separate winter seasonal 

models to estimate calf:cow ratio’s during winter.  The main second assumption is the 

assumption of independence in detection, especially given elk are classically a group-living 
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species. While we did not extend the Royle-Nichols’s model to account for group-level 

detection, it could be possible to model the abundance of elk groups, augmented with additional 

information about average elk group size to estimate elk abundance.  Regardless of these 

challenges with the assumptions of our model, the close correspondence between our abundance 

estimates from the occuRN models and field counts (see below) reassures our interpretation of 

our results as providing biologically interpretable results.  

The reported abundance estimates derived from the ranef function in the R package 

unmarked produced believable abundance estimates for adult female and calf elk. Indeed, some 

abundance estimates appear to be skewed in relation to the actual abundance of elk on the 

landscape at the sampled period (Table 2 and 3). We strengthened our reported abundance 

estimates by conducting Akaike weights (Burnham and Anderson 2002) to account for model 

selection uncertainty across our top occuRN models from our 17 top models for each time 

period. For example, in the second sampling period (spring), both calf and adult female elk 

reported abundance estimates of 163.4 and 231.4 individuals respectively.  These modeled 

averaged abundance estimates roughly correspond to maximum ground counts of adults and 

calves obtained in the summer of 182 total individuals (M. Hessami, unpublished data). The 

processes influencing this high estimate could be: a) migration and parturition plasticity– in 

which adult females return to the resident herd after rearing calves to adequate mobility (~3 

weeks old); or b) group size of elk is not being explicitly accounted for in the occuRN model. 

Important to the scope of this paper, the attributed calf:cow ratio with this time period does make 

biological sense and therefore supports the precision of the occuRN model in estimating 

recruitment rates in the YHT elk population. Thus, we feel justified in our interpretation and 
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cumulative impact our study has on the ability to model juvenile recruitment in a partially 

migratory elk population.  

The correlation between remote camera and ground-based estimates was not perfect, 

suggesting one method may be better at tracking trends in calf survival over a summer interval.  

But without a known reference sample, such as radiocollared animals, interpretation of which 

method is ‘best’ is challenging.  Similar to Ikeda et al. (2013), our two early sampling periods 

(early spring, spring) could be biased by low detection associated with calves in hiding.  There 

have been two studies that have compared radiomarked or individually recognizable individual 

survival rates to recruitment rates from cameras. The first we discussed in the introduction, by 

Chitwood et al. (2017) that showed close correspondence between visual observations and fawn 

survival rates over 6 years in 2 study areas.  Second, Chandler et al. (2017) used individually 

recognizable spot patterns on key deer neonatal fawns to track survival using a Spatially-

Explicit-Capture-Recapture framework.  He also showed close correspondence between this 

independent estimate of the neonate survival rate and biological expectations from other neonatal 

studies. However, unlike these two studies, we did not have a metric of truth to compare our 

results with because obtaining a census in this population, like most other wildlife studies, this 

would be extremely difficult, if not possible.  Future studies with these data may be able to 

compare remote camera-based estimates of recruitment with neonatal elk calf survival from Berg 

(2019)’s marked elk calves in 2017. Uncertainty in truth is prevalent in most ungulate studies, 

unless the population is closed (fenced), or marked or individually recognizable individuals offer 

an approach to estimate survival rates (Fiske and Chandler 2011; Erbert et al. 2012; Zero et al. 

2013). Regardless of these difficulties, our study revealed that ground estimates have unreliable 

recruitment estimates for calf elk due to sightability bias in the early calf-rearing stage. 
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Our research was motivated by the need to develop more precise, non-invasive and large-

scale sampling techniques to better monitor a critical parameter of elk life history. The Ya Ha 

Tinda elk herd is a cultural keystone species, providing food security for the Stoney Sioux First 

Nations (Johnson 2012), trophy bull opportunity via a coveted limited entry draw system 

(Government of Alberta 2017), and recreational opportunity for the general public. Thus, reliable 

annual estimates of population vital rates are paramount for sound management decisions. 

Current research at the YHT seeks to develop integrated population models (Abadi et al. 2010) 

that capture dynamic and complex annual ecological process and produce precise population 

estimates for management purposes. Our study provides reliable camera-based recruitment 

estimates that will be incorporated in integrated population models in the future. Moving 

forward, it could be profitable to compare our results to Berg (2019) calf survival study 

conducted at the YHT between 2013-2016, similar to Chitwood et al. (2017). Furthermore, this 

approach could also be used to estimate bull:cow ratios similar to Ikeda et al. (2013) for Sika 

deer in Japan, but with comparison to radiocollar-informed estimates of bull:cow ratios. 

 The use of remote-camera surveys in population monitoring is becoming more common. 

Advances in camera technology, reduction in cost, and scientific studies demonstrating their 

power are promulgating their acceptance in wildlife management. Large networks of remote 

cameras could lead to robust monitoring networks capable of detecting changes in animal 

distribution and abundance (Steenweg et al. 2017). Automated classification programs are easing 

the ability of such camera networks to generate useable data (Tabak et al. 2019). Our methods 

have replicability potential to more species than just elk, including other ungulates whom 

neonates are followers from birth (moose, caribou; Rangifer tarandus) instead of hiders (elk, 

mule deer, antelope). Western Provinces and States are often limited in ability to adequately 
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monitor game-species due to expansive management areas and cost (Timmerman 1993). Aerial 

surveys are expensive and risky yet are a predominate method of estimating population vital 

rates in harvested species across the Western US and Canada (Gasaway et al. 1986; Caughley 

and Sinclair 1994; Moeller 2017). The application of remote cameras could help improve data-

collection practices and contribute to needed advances in wildlife management. 
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Appendices 

Table A1: Top (< 4 DAIC) occuRN univariate detection probability models for calf elk 
incorporating abiotic, biotic, and anthropogenic covariates to best inform influence of detection 
(r) on Abundance estimates (N) at the Ya Ha Tinda, Alberta, Canada using n=37 cameras. 
Detection probability was fixed as a constant and tested for effect of top covariate (~1 covariate 
+1) and is logit transformed, K is the number of parameters in the model. 
 
Detection top (*p) Model  K SE AIC DAIC 
Early Spring- Period 1 
~1 + ndist_road.s ~ 1 3 1.062 83.530 0 
~1 + regen500.s ~ 1 3 1.645 84.624 1.094 
~1 + cuts100.s ~ 1 3 1.219 85.792 2.262 
~1 + burns500.s ~ 1 3 1.218 85.892 2.362 
~1 + dhimin100.s ~ 1 3 0.624 85.897 2.367 
~1~ 1 (null) 3 0.793 86.649 3.119 
Spring – Period 2 
~1 + dhiseas100.s ~ 1 3 0.232 115.922 0 
~1 + dhicum100.s ~ 1 3 0.956 117.944 2.022 
~1 + NDVIAug20.s ~ 1 3 0.508 119.657 3.735 
~1~ 1 (null) 2 1.221 126.596 10.674 
Summer – Period 3 
~1 + ndist_road.s ~ 1 3 0.529 119.287 0 
~1 + dhiseas100.s ~ 1 3 0.549 120.578 1.291 
~1 + dhimin100.s ~ 1 3 0.084 120.623 1.336 
~1 + regen500.s ~ 1 3 0.720 120.628 1.341 
~1 + burns500.s ~ 1 3 0.691 121.423 2.136 
~1 ~ 1 2 0.582 121.915 2.628 
~1 + dhicum100.s ~ 1 3 0.207 122.503 3.216 
~1 + cuts100.s ~ 1 3 0.576 122.707 3.42 
Late Summer – Period 4 
~1 + dhicum20.s ~ 1 3 0.682 138.678 0 
~1 + dhiseas20.s ~ 1 3 0.992 139.542 0.864 
~1 + cuts20.s ~ 1 3 0.394 141.131 2.453 
~1 + NDVIJul500.s ~ 1 3 0.348 141.640 2.962 
~1 + NDVIAug500.s ~ 1 3 0.345 141.835 3.157 
~1 + cuts100.s ~ 1 3 0.303 142.169 3.491 
~1 ~ 1 2 0.365 147.129 8.451 
Fall – Period 5 
~1 + ndist_edge.s ~ 1 3 0.036 125.0819 0 
~1 + dhimin20.s ~ 1 3 0.120 125.178 0.097 
~1 + d2road.s ~ 1 3 0.183 126.233 1.151 
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~1 ~ 1 2 0.006 126.320 1.238 
~1 + dhicum20.s ~ 1 3 0.168 126.460 1.378 
~1 + dhiseas100.s ~ 1 3 0.184 126.913 1.831 
~1 + dhiseas20.s ~ 1 3 0.294 127.315 2.233 
~1 + NDVIJul100.s ~ 1 3 0.293 127.368 2.286 
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Table A2: Top (< 4 DAIC) occuRN univariate detection probability models for adult female elk 
incorporating abiotic, biotic, and anthropogenic covariates to best inform influence of detection 
(r) on Abundance estimates (N) at the Ya Ha Tinda, Alberta, Canada using n=37 cameras. 
Detection probability was fixed as a constant and tested for effect of top covariate (~1 covariate 
+1) and is logit transformed, K is the number of parameters in the model. 
 
 
Detection top (*p) Model  K SE AIC DAIC 
Early Spring- Period 1 
~1 + ndist_road.s ~ 1 3 0.641 197.472 0 
~1~ 1 (null) 2 0.336 219.994 22.52 
Spring – Period 2 
~1 + dhiseas100.s ~ 1 3 0.181 294.588 0 
~1 + dhicum100.s ~ 1 3 0.166 296.717 2.129 
~1 + NDVIJul20.s ~ 1 3 0.658 297.292 2.704 
~1~ 1 (null) 2 1.221 303.109 8.521 
Summer – Period 3 
~1 + NDVIJul20.s ~ 1 3 0.267 226.632 0 
~1 + dhiseas100.s ~ 1 3 0.298 226.679 0.047 
~1 + NDVIAug20.s ~ 1 3 0.274 226.766 0.134 
~1 + dhimin100.s ~ 1 3 0.497 226.934 0.302 
~1 + dhicum100.s ~ 1 3 0.266 226.970 0.338 
~1 + ndist_road.s ~ 1 3 0.2917 228.533 1.901 
~1 ~ 1 (null) 2 0.437 234.378 7.746 
Late Summer – Period 4 
~1 + regen20.s ~ 1 3 0.496 259.238 0 
~1 + cuts100.s ~ 1 3 0.192 262.077 2.839 
~1 + dhimin20.s ~ 1 3 0.211 262.533 3.295 
~1 ~ 1 (null) 2 0.428 265.706 6.468 
Fall – Period 5 
~1 + NDVIAug100.s ~ 1 3 0.188 262.496 0 
~1 + NDVIJul100.s ~ 1 3 0.193 262.550 0.054 
~1 + NDVIJul500.s ~ 1 3 0.171 262.813 0.317 
~1 + NDVIAug500.s ~ 1 3 0.172 262.976 0.48 
~1 + regen500.s ~ 1 3 0.865 264.268 1.772 
~1 + tpi100.s ~ 1 3 0.148 265.674 3.178 
~1 ~ 1 (null) 2 1.581 266.523 4.027 

 


