Faculty

Joel Harper

Professor

Contact

Office
ISB 406C
Phone
406-243-5867
Email
joel@mso.umt.edu

Courses Taught

GEOS 318: Earth's Changing Climate
The future of our climate from the perspective of climate system dynamics. The course has three five-week modules. The first covers the processes and time scales governing Earth’s heat balance, the basic rules of changing climate. The second module explores climate variability stemming from internal dynamics of the climate system. The final module examines the grand challenge in climate science: constraining projections of future change with regards to feedbacks and uncertainties in climate system processes. Emerging research is highlighted throughout the course on unsettled scientific problems in climate science and the approaches taken by scientists to solve them.

GEOS 488: Snow Ice and Climate
Frozen water (i.e., glaciers, ice sheets, seasonal snow, and sea ice) is a primary component of Earth's climate system that both drives and responds to climate change. This course examines the role of snow and ice in four key aspects of climate change, highlighting unsolved problems and current research: 1) global sea level rise and stability of ice sheets; 2) Arctic amplification of climate change and sea ice processes; 3) climate system feedbacks revealed by ice cores; and, 4) water supply and mountain snowpack dynamics.

GEOS 508: Onboarding to Scientific Practice and Culture
Skills and knowledge needed to perform successfully as a graduate student researcher and to continue as a career scientist. Designing research projects based on sound scientific reasoning, writing successful grant proposals, and making effective written and oral presentations to scientific peers. Furthermore, the course examines evolving trends and cultures in science, such as bias, reproducibility, publishing, and education/career trajectories. Intended for first semester graduate students

GEOS 548: Advanced Topics in the Cryosphere
In-depth study of revolving topics related to the cryosphere involving lectures, readings, discussions, exercises, and original research. Topics of recent semester-long courses include:
     -Retention and flow of water in snow
     -Development and deployment of field instrumentation
     -Sea level rise

GEOS 568: Climate Sensitivity and Feedbacks
Climate sensitivity is a metric of the Earth’s climate system which describes the temperature change resulting from a radiative imbalance (forcing). Climate sensitivity reflects all internal dynamics and feedbacks that amplify or dampen forcings. This graduate course examines past, present, and future climate change via the climate sensitivity metric. We investigate the dynamics and feedbacks in the climate system, the time scales of climate system response, and the methods for evaluating our climate system’s sensitivity to greenhouse gas forcing.

Research Interests

Ice and Climate: Glaciology, Snow Hydrology, Climate Science

My research is focused on the interactions and feedbacks between the cryosphere (the frozen world) and the climate system. This work is motivated by societal need to understand the climate system and how it changes, project sea level rise, and manage water resources. I employ methods of computer modeling, data analysis, and field instrumentation. My field research is conducted on the Greenland Ice Sheet, small glaciers in Alaska and Montana, and seasonal snow in Montana. My research is funded by the U.S. National Science Foundation, NASA, and the Swedish Nuclear Waste Management Organization.

Drilling 30 meter ice cores and installing instrumentation on the Greenland Ice Sheet.


How do you travel from camp to a drilling site located 50 km away on the Greenland Ice Sheet?

 

Prospective Graduate Students
We have a small collaborative research group of both M.S. and Ph.D. students. Current projects are focused on seasonal snowpack in the Mountain West and the Greenland Ice Sheet. Openings usually begin in early or late summer, but sometimes openings exist for starting winter term. The research we do is quantitative, and students don’t necessarily need to conduct field research. No specific prerequisite courses in geoscience are required, although a quantitative skillset (math/programming) is necessary. Our students typically enter with undergraduate degrees in earth/ocean/atmospheric science, math, data science, or physics. Past graduates have leveraged their computational skills with their high-level water and climate literacy to become employed in government agencies, academic settings, and with private firms engaged in water/climate issues. Don’t hesitate to be in touch if this sounds like you.

Publications

Broad Interest Journals
Liljedahl, L. C., Meierbachtol, T., Harper, J., van As, D., Näslund, J.-O., Selroos, J.-O. (2021). Rapid and sensitive response of Greenland’s groundwater system to ice sheet change. Nature Geoscience, 14, 751-755, doi: 10.1038/s41561-021-00813-1.

Maier, N., Humphrey, N., Harper, J., and Meierbachtol, T. (2019). Sliding dominates slow-flowing margin regions, Greenland Ice Sheet. Science Advances, 5(7), doi: 10.1126/sciadv.aaw5406.

Doyle, S. H., et al. (2015). Amplified melt and flow of the Greenland Ice Sheet driven by late-summer cyclonic rainfall. Nature Geoscience, 8(8), 647–653, doi: 10.1038/ngeo2482.

Harper, J. (2013). Cryosphere: Greenland’s lurking aquifer. Nature Geoscience, 7(2), 86–87, doi: 10.1038/ngeo2061.

Meierbachtol, T., Harper, J., and Humphrey, N. (2013). Basal drainage system response to increasing surface melt on the Greenland Ice Sheet. Science, 341(6147), 777–779, doi: 10.1126/science.1235905.

Harper, J. T., Humphrey, N., Pfeffer, W. T., Brown, J., and Fettweis, X. (2012). Greenland Ice Sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature, 491(7423), 240–243, doi: 10.1038/nature11566.

Harper, J. T., Bradford, J. H., Humphrey, N. F., and Meierbachtol, T. W. (2010).Vertical extension of the subglacial drainage system into basal crevasses. Nature, 467, 579–582, doi: 10.1038/nature09398.

Pfeffer, W. T., Harper, J. T., and O’Neel, S. (2008). Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science, 321 (5894), 1340–1343, doi: 10.1126/science.1159099.

Harper, J. T., Humphrey, N. F., and Pfeffer, W. T. (1998). Three-dimensional deformation measured in an Alaskan glacier. Science, 281(5381), 1340–1342.

 

Discipline-specific Journals
Harper, J., Saito, J., & Humphrey, N. (2023). Cold Season Rain Event Has Impact on Greenland’s Firn Layer Comparable to Entire Summer Melt Season. Geophysical Research Letters, 50(14). https://doi.org/10.1029/2023GL103654

Hagen, C. J., & Harper, J. T. (2023). Dynamic time warping to quantify age distortion in firn cores impacted by melt processes. Annals of Glaciology. https://doi.org/10.1017/aog.2023.52

Løkkegaard, A., Mankoff, K. D., Zdanowicz, C., Clow, G. D., Lüthi, M. P., Doyle, S. H., Thomsen, H. H., Fisher, D., Harper, J., Aschwanden, A., Vinther, B. M., Dahl-Jensen, D., Zekollari, H., Meierbachtol, T., McDowell, I., Humphrey, N., Solgaard, A., Karlsson, N. B., Khan, S. A., … Colgan, W. T. (2023). Greenland and Canadian Arctic ice temperature profiles database. The Cryosphere, 17(9), 3829–3845. https://doi.org/10.5194/tc-17-3829-2023

Saito, J., Meierbachtol, T., and Harper, J. (2022). Multi-decadal elevation changes of the land terminating sector of West Greenland. Journal of Glaciology, 1–9, doi: 10.1017/jog.2022.47.

Stansberry, A., Harper, J., Johnson, J. V., & Meierbachtol, T. (2022). Millennial-scale migration of the frozen / melted basal boundary, western Greenland Ice Sheet. Journal of Glaciology, 1–10,  doi: 10.1017/jog.2021.134.

Harper, J., Meierbachtol, T., Humphrey, N., Saito, J., and Stansberry, A. (2021). Generation and fate of basal meltwater during winter, western Greenland Ice Sheet. The Cryosphere, 15(12), 5409–5421, doi: 10.5194/tc-15-5409-2021.

Maier, N., Humphrey, N., Meierbachtol, T., Harper, J. (2021). Deformation motion tracks sliding changes through summer, western Greenland. Journal of Glaciology, 68, 187-196, doi: 10.1017/jog.2021.87.

Humphrey, N. F., Harper, J. T., Meierbachtol, T. W. (2021). Physical limits to meltwater penetration in firn. Journal of Glaciology, 67, 952-960, doi: 10.1017/jog.2021.44.

McDowell, I. E., Humphrey, N. F., Harper, J. T., and Meierbachtol, T. W. (2021). The cooling signature of basal crevasses in a hard-bedded region of the Greenland Ice Sheet. The Cryosphere, 15, 897–907, doi: 10.5194/tc-15-897-2021.

Leone, R., Harper, J., Meierbachtol, T., and Humphrey, N. (2020). Horizontal ice flow impacts the firn structure of Greenland’s percolation zone. The Cryosphere, 14, 1703–1712, doi: 10.5194/tc-14-1703-2020.

Humphrey, N., Harper, J., Meierbachtol, T. (2020). Hot water drilling in the firn layer of Greenland’s percolation zone. Annals of Glaciology, 1–4, doi: 10.1017/aog.2020.75.

Elser, J. J., Wu, C., González, A. L., Shain, D. H., Smith, H. J., Sommaruga, R., et al. (2020). Key rules of life and the fading cryosphere: Impacts in alpine lakes and streams. Global Change Biology, 26(12), 6644–6656, doi: 10.1111/gcb.15362.

Florentine, C., Harper, J., and Fagre, D. (2020). Parsing complex terrain controls on mountain glacier response to climate forcing. Global and Planetary Change, 191, doi: 10.1016/j.gloplacha.2020.103209.

Hills, B. H., Harper, J. T., Meierbachtol, T. W., Johnson, J. V., Humphrey, N. F., and Wright, P. J. (2018). Processes influencing near-surface heat transfer in Greenland’s ablation zone. The Cryosphere, 12, 3215–3227, doi: 10.5194/tc-12-3215-2018.

Florentine, C., Harper, J., Fagre, D., Moore, J., and Peitzsch, E. (2018). Local topography increasingly influences the mass balance of a retreating cirque glacier. The Cryosphere, 12, 2109–2122, doi: 10.5194/tc-12-2109-2018.

Florentine, C., Harper, J., Johnson, J., and Meierbachtol, T. (2018). Radiostratigraphy reflects the present-day, internal ice flow field in the ablation zone of western Greenland. Frontiers in Earth Science, 6, doi: 10.3389/feart.2018.00044.

Meierbachtol, T. W., Harper, J. T., and Humphrey, N. F. (2018). Short duration water pressure transients in western Greenland’s subglacial drainage system. Journal of Glaciology, 64(243), 171–174, doi: 10.1017/jog.2018.9.

Downs, J. Z., Johnson, J. V., Harper, J. T., Meierbachtol, T., and Werder, M. A. (2018). Dynamic hydraulic conductivity reconciles mismatch between modeled and observed winter subglacial water pressure. Journal of Geophysical Research: Earth Surface, 123(4), 818–836, doi: 10.1002/2017JF004522.

Woelber, B., Maneta, M. P., Harper, J., Jencso, K. G., Gardner, W. P., Wilcox, A. C., and  López-Moreno, I. (2018). The influence of diurnal snowmelt and transpiration on hillslope throughflow and stream response. Hydrology and Earth System Sciences, 22(8), 4295–4310, doi: 10.5194/hess-22-4295-2018.

Harper, J. T., Humphrey, N. F., Meierbachtol, T. W., Graly, J. A., and Fischer, U. H. (2017). Borehole measurements indicate hard bed conditions, Kangerlussuaq Sector, western Greenland Ice Sheet. Journal of Geophysical Research: Earth Surface, 1–14, doi: 10.1002/2017JF004201.

Hills, B. H., Harper, J. T., Humphrey, N. F., and Meierbachtol, T. W. (2017). Measured horizontal temperature gradients constrain heat transfer mechanisms in Greenland ice. Geophysical Research Letters, 44, 9778-9785, doi: 10.1002/2017GL074917.

Brown, J., Harper, J., Humphrey, N. (2017). Liquid water content in ice estimated through a full-depth ground radar profile and borehole measurements in western Greenland. The Cryosphere, 11, 1–11, doi: 10.5194/tc-11-1-2017.

Clark, A., Fagre, D., Peitzsch, E., Reardon, B., and Harper, J. (2017). Glaciological measurements and mass balances from Sperry Glacier, Montana, USA, years 2005–2015. Earth System Science Data, 9, 47-61, doi: 10.5194/essd-9-47-2017.

Meierbachtol, T., Harper, J., and  Johnson, J. (2016). Force balance along Isunnguata Sermia, West Greenland, Frontiers of Earth Science, 4, 1–9, doi: 10.3389/feart.2016.00087.

Wright, P. J., Harper, J. T., Humphrey, N. F., and Meierbachtol, T. W. (2016). Measured basal water pressure variability of the western Greenland Ice Sheet: Implications for hydraulic potential. Journal of Geophysical Research: Earth Surface, 121, 1–14, doi: 10.1002/2016JF003819.

Graly, J. A., Humphrey, N. F., and Harper, J. T. (2016). Chemical depletion of sediment under the Greenland Ice Sheet. Earth Surface Processes and Landforms, 1–15, doi: 10.1002/esp.3960.

Meierbachtol, T. W., Harper, J. T., Humphrey, N. F., and Wright, P. (2015). Mechanical forcing on water pressure in a hydrologically isolated reach beneath western Greenland’s ablation zone. Annals of Glaciology, 1–9, doi: 10.1017/aog.2016.5.

Cox, C., Humphrey, N., and Harper, J. (2015). Quantifying meltwater refreezing along a transect of sites on the Greenland Ice Sheet. The Cryosphere, 9, 691–701, doi: 10.5194/tc-9-691-2015.

Clark, A. M., Harper, J. T., and Fagre, D. B. (2015). Glacier-derived August runoff in northwest Montana. Arctic, Antarctic, and Alpine Research, 47:1, 1–16.

Harrington, J., Humphrey, N.F., and Harper, J. T. (2015). Temperature distribution and thermal anomalies along a flowline of the Greenland Ice Sheet. Annals of Glaciology, 56:70, 70A945.

Meierbachtol, T. W., Harper, J. T., Johnson, J. V., Humphrey, N. F., and Brinkerhoff, D. J. (2015). Thermal boundary conditions on western Greenland: observational constraints and impacts on the modeled thermo-mechanical state. Journal of Geophysical Research: Earth Surface, 120, 623-636, doi: 10.1002/2014JF003375.

Graly, J. A., Humphrey, N. F., Landowski, C. M., and Harper, J. T. (2014). Chemical weathering under the Greenland Ice Sheet. Geology, 42(6), 551–554, doi: 10.1130/G35370.1.

Seligman, Z. M., Harper, J. T., and Maneta, M. P. (2014). Changes to snowpack energy state from spring storm events, Columbia River headwaters, Montana. Journal of Hydrometeorology, 15(1), 159–170, doi: 10.1175/JHM-D-12-078.1.

Bradford, J. H., Nichols, J., Harper, J. T., and Meierbachtol, T. (2013). Compressional and EM wave velocity anisotropy in a temperate glacier due to basal crevasses, and implications for water content estimation. Annals of Glaciology, 54(64), 168–178, doi: 10.3189/2013AoG64A206.

Rennermalm, A. K., et al. (2013). Understanding Greenland Ice Sheet hydrology using an integrated multi-scale approach. Environmental Research Letters, 8(1), 015017, doi: 10.1088/1748-9326/8/1/015017.

Silverman, N. L., Maneta, M. P., Chen, S.-H., and Harper, J. T. (2013). Dynamically downscaled winter precipitation over complex terrain of the Central Rockies of western Montana, USA. Water Resources Research, 49(1), 458–470, doi: 10.1029/2012WR012874.

Brown, J., Bradford, J., Harper, J., Pfeffer, W. T., Humphrey, N., and Mosley-Thompson, E. (2012). Georadar-derived estimates of firn density in the percolation zone, western Greenland Ice Sheet. Journal Geophysical Research, 117(F1), F01011, doi: 10.1029/2011JF002089.

Humphrey, N. F., Harper, J. T., and Pfeffer, W. T. (2012). Thermal tracking of meltwater retention in Greenland’s accumulation area. Journal of Geophysical Research, 117(F1), F01010, doi: 10.1029/2011JF002083.

Mikesell, T. D., van Wijk, K., Haney,  M. M., Bradford, J. H., Marshall, H. P., and Harper, J. T. (2012). Monitoring glacier surface seismicity in time and space using Rayleigh waves. Journal of Geophysical Research, 117(F2), F02020, doi: 10.1029/2011JF002259.

Brinkerhoff, D. J., Meierbachtol, T. W., Johnson, J. V.,  and Harper, J. T. (2011). Sensitivity of the frozen/melted basal boundary to perturbations of basal traction and geothermal heat flux: Isunnguata Sermia, western Greenland. Annals of Glaciology, 52(59), 43–50.

Brown, J., Harper, J., Pfeffer, W. T., Humphrey, N., and Bradford, J. (2011). High-resolution study of layering within the percolation and soaked facies of the Greenland Ice Sheet. Annals of Glaciology, 52(59), 35–42.

Harper, J., Humphrey, N., Pfeffer, W. T., and Brown, J. (2011). Firn stratigraphy and temperature to 10m depth in the percolation zone of western Greenland, 2007–2009. INSTAAR, Occas. Pap., ISSN 0069-(60).

Brown, J., Harper, J., and Humphrey, N. (2010). Cirque glacier sensitivity to 21st century climate change: Sperry Glacier, Montana. Global Planetary Change, 74(2), 91–98, doi: 10.1016/j.gloplacha.2010.09.001.

Gillan, B. J., Harper, J. T., and Moore, J. N. (2010). Timing of present and future snowmelt from high elevations in northwest Montana. Water Resources Research, 46, W01507, doi: 10.1029/2009WR007861.

Bradford, J. H., Harper, J. T., and Brown, J. (2009). Complex dielectric permittivity measurements from ground-penetrating radar data to estimate snow liquid water content in the pendular regime. Water Resources Research, 45, 1–12, doi: 10.1029/2008WR007341.

Bradford, J. H., Nichols, J., Mikesell, D., and Harper, J. T. (2009). Continuous profiles of electromagnetic wave velocity and water content in glaciers. Annals of Glaciology, 50, 1–9, doi: 10.3189/172756409789097540.

Brown, J., Harper, J. and Bradford, J. (2009). A radar transparent layer in a temperate valley glacier: Bench Glacier, Alaska. Earth Surface Processes and Landforms, 34, 1497–1506, doi: 10.1002/esp.1835.

Fudge, T. J., Harper, J. T., Humphrey, N. F., and Pfeffer, W. F. (2009). Rapid glacier sliding, reverse ice motion, and subglacial water pressure during an autumn rainstorm. Annals of Glaciology, 50, 101–108, doi: 10.3189/172756409789624247.

Fudge, T. J., Humphrey, N. F., Harper, J. T., and Pfeffer, W. T. (2008). Diurnal fluctuations in borehole water levels: Configuration of the drainage system beneath Bench Glacier, Alaska. Journal of Glaciology, 54(185), 297–306, doi: 10.3189/002214308784886072.

Meierbachtol, T., Harper, J. T., Humphrey, N. F., Shaha, J., and Bradford, J. (2008). Air compression as a mechanism for the underdamped slug test response in fractured glacier ice. Journal of Geophysical Research, 113(F04009), 1–14, doi: 10.1029/2007JF000908.

Bleha, J. A., and Harper, J. T. (2007). Snowmelt water generation in a large mountain basin of northwest Montana from a MODIS driven model.  In Symposium on Environmental Sensing, vol. 1, M. Gribb, Ed., pp. 83–86., Inland Northwest Research Alliance, Boise, ID.

Harper, J. T., Humphrey, N. F., Pfeffer, W. T., and Lazar, B. (2007). Two modes of accelerated glacier sliding related to water. Geophysical Research Letters, 34(12), L12503, doi: 10.1029/2007GL030233.

Moore, J. N., Harper, J. T., and Greenwood, M. C. (2007). Significance of trends toward earlier snowmelt runoff, Columbia and Missouri Basin headwaters, western United States. Journal of Geophysical Research, 34, L16402, doi: 10.1029/2007GL031022.

Bradford, J. H., and Harper, J. T. (2006). Measuring complex dielectric permittivity from GPR to estimate liquid water content in snow. Soc. Explor. Geophys. Tech. Progr., 25, 1352–1356, doi: 10.1190/1.2369770.

Bradford, J. H., and Harper, J. T. (2005). Wavefield migration as a tool for estimating spatially continuous radar velocity and water content in glaciers. Geophysical Research Letters, 32, L08502, doi: 10.1029/2004GL021770.

Fudge, T. J., Harper, J. T., Humphrey, N. F., Pfeffer, W. F. (2005). Timing and pattern of termination of diurnal water pressure fluctuations: Bench Glacier, Alaska. Annals of Glaciology, 40, 102–106, doi: 10.3189/172756405781813799.

Harper, J. T., Humphrey, N. F., Pfeffer, W. T., Fudge, T., and O’Neel, S. (2005). Evolution of subglacial water pressure along a glacier’s length. Annals of Glaciology, 40, 31–36, doi: 10.3189/172756405781813573.

Harper, J. T., and Bradford, J. H. (2003). Snow stratigraphy over a uniform depositional surface: spatial variability and measurement tools. Cold Regions Science and Technology, 37(3), 289–298.

Harper, J. T., Humphrey, N. F. (2003). High altitude Himalayan climate inferred from glacial ice flux. Geophysical Research Letters, 30(14), 1764–1769, doi: 10.1029/2003GL017329.

Harper, J. T., and Bradford, J. H. (2002). Spatial variability of snow stratification in the absence of terrain factors. In International Snow Science Workshop 2002, R. Stevens, Ed., pp. 1–8, International Snow Science Workshop Canada Inc., Penticton, B.C. Canada.

Harper, J. T., Humphrey, N. F., Greenwood, M. C. (2002). Basal conditions and glacier motion during the winter/spring transition, Worthington Glacier, Alaska, U.S.A. Journal of Glaciology, 48(160), 42–50, doi: 10.3189/172756502781831629.

Marshall, H. P., Harper, J. T., Pfeffer, W. T.,and Humphrey, N. F. (2002). Depth-varying constitutive properties observed in an isothermal glacier. Geophysical Research Letters, 29(61), 1–4.

Harper, J. T., Humphrey, N. F., Pfeffer, W. T., Huzurbazar, S. V., Bahr, D. B., Welch, B. C. (2001). Spatial variability in the flow of a valley glacier: Deformation of a large array of boreholes, Journal of Geophysical Research, 106(B5), 8547–8562, doi: 10.1029/2000JB900440.

Pfeffer, W. T., Humphrey, N. F., Amadei, B., Harper, J. T., and Wegmann, J. (2000). In-situ stress tensor measured in an Alaskan glacier. Annals of Glaciology, 31, 229–235.

Harper, J. T., Humphrey, N. F., and Pfeffer, W. T. (1998). Crevasse patterns and the strain rate tensor: A high resolution comparison. Journal of Glaciology, 44(146), 68–76.

Jones, L. S., and Harper, J. T. (1998). Channel avulsions and related processes, and large-scale sedimentation patterns since 1875, Rio Grande, San Luis Valley, Colorado. Geological Society of America Bulletin, 110(3), 411–421.

Welch, B. C., Pfeffer, W. T., Harper, J. T., and Humphrey, N. F. (1998). Mapping subglacial surfaces below temperate valley glaciers using 3-dimensional radio-echo sounding techniques. Journal of Glaciology, 44(146), 164–170.

Harper, J. T., Humphrey, N. F., Pfeffer, W. T., and Welch, B. C. (1996). Short wavelength variations in the horizontal velocity field of a valley glacier. In Glaciers, Ice Sheets and Volcanoes, S. C. Colbeck, Ed., pp. 41–48, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, N.H.

Welch, B. C., Pfeffer, W. T., Harper, J. T., and Humphrey, N. F. (1996). A maximum glacier-bed surface obtained by radio-echo sounding. In Glaciers, Ice Sheets and Volcanoes, Special Report, S. C. Colbeck, Ed., pp. 105–110, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, N.H.

Harper, J. T., and Humphrey, N. F. (1995). Borehole video analysis of a temperate glacier’s englacial and subglacial structure; implications for glacier flow models. Geology, 23(10), 901–904.

Harper, J. T. (1993). Glacier terminus fluctuations on Mount Baker, Washington, U.S.A., 1940-1990, and climatic variations. Arctic and Alpine Research, 25(4), 332–340.

 

Peer Reviewed Reports and Chapters

Fischer, U., Bebiolk, A., Brandefelt, J., Cohen, D., Harper, J., Hirschorn, S., Jensen, M., Kennell, L., Liakka, J., Näslund, J., Normani, S., Stück, H., Weitkamp, A. (2021). Radioactive Waste Under Conditions of Future Ice Ages. Elsevier Book Series, Snow and Ice-Related Hazards, Risks and Disasters. Eds. W. Haeberli and C. Whiteman, 2nd Edition, ISBN: 9780128171295, 700 p.

Harper, J. T., Meierbachtol, T. W., and Humphrey, N. F. (2019). Scaling Physical Conditions and Processes at the Bed of the Greenland Ice Sheet. Svensk Kärnbränslehantering AB Reviewed Technical Report (RTR) 18-06: Stockholm, Sweden, ISSN 1402-3091, 118 p.

Jaquet, O., Namar, R., Siegel, P., Harper, J., and Jansson, P. (2019). Groundwater Flow Modelling Under Transient Ice Sheet Conditions in Greenland. Svensk Kärnbränslehantering AB Reviewed Technical Report (RTR) R-19-17: Stockholm, Sweden, ISSN 1402-3091 , 123 p.

Harper, J., Hubbard, A., Ruskeeniemi, T., Claesson Liljedahl, L., Kontula, A., Hobbs, M., Brown, J., Dirkson, A., Dow, C., Doyle, S., Drake, H., Engström, J., Fitzpatrick, A., Follin, S., Frape, S. (2016). The Greenland Analogue Project: Data and Processes, Svensk Kärnbränslehantering AB, Stockholm, Sweden, ISSN 1402-3091, 387p.

Harper, J.T., and Jansson, P. (2016). Greenland Ice Sheet Surface and Bed Hydrologic Systems. Chapter in Greenland Analogue Project, L. Claesson Liljedahl and A. Lehtinen, Eds., Svensk Kärnbränslehantering AB, Stockholm, Sweden, TR-14-13, ISSN 1404-0344, 142p.

Harper, J.T. (2016). Conceptual model for a transect of ice sheet basal conditions. Chapter in Greenland Analogue Project, L. Claesson Liljedahl and A. Lehtinen, Eds., Svensk Kärnbränslehantering AB, Stockholm, Sweden, TR-14-13, ISSN 1404-0344, 142p.\

Harper, J., Hubbard, A., Ruskeeniemi, T., Claesson Liljedahl, L., Lehtinen, A., Booth, A., Brinkerhoff, D., Chandler, D., Drake, H., Dow, C., Doyle, S., Engström, J., Fitzpatrick, A., Frape, S., Helanow, C., Henkemans, E., Humphrey, N., Johnson, E., Johnson, J., Jones, G., Klint, K. E., Kulessa, B., Landowski, C., Lindbäck, K., Luckman, A., Maddoc, L., Makahnouk, M., Meierbachtol, T., Pere, T., Pettersson, R., Pimentel, S., Quincey, D., Tullborg, E-L., van As, D. (2014). The Greenland Analogue Project - Yearly Report 2011. Swedish Nucl. Fuel Waste Manag. Co., Stockholm, Sweden, 202 pp., Svensk Kärnbränslehantering AB R-11-23 / Posiva: WR 2012-79.

Harper, J., Hubbard, A., Ruskeeniemi, T., Claesson Liljedahl, L., Lehtinen, A., Booth, A., Brinkerhoff, D., Drake, H., Dow, C., Doyle, S., Engström, J., Fitzpatrick, A., Frape, S., Henkemans, E., Humphrey, N., Johnson, J., Jones, G., Joughin, I., Klint, K. E., Kukkonen, I., Kulessa, B., Landowski, C., Lindbäck, K., Makahnouk, M., Meierbachtol, T., Pere, T., Pedersen, K., Pettersson, R., Pimentel, S., Quincey, D., Tullborg, E.-L., and van As, D. (2012). The Greenland Analogue Project - Yearly Report  2010, Swedish Nucl. Fuel Waste Manag. Co., Stockholm, Sweden, 162 pp., Svensk Kärnbränslehantering AB R-11-23 / Posiva: WR 2012-16.

Claesson Liljedahl, L., Lehtinen, A., Harper, J., Hubbard, A., Ruskeeniemi, T. (2010), The Greenland Analogue Project - Yearly Report 2009. Swedish Nucl. Fuel Waste Manag. Co., Stockholm, Sweden, 116 pp., ISSN 1402-3091 (SKB R-11-23).